
           @ 2026 | PUBLISHED BY GJR PUBLICATION, INDIA  

 

109 

   
 

Global Journal of Research in Engineering & Computer Sciences 
ISSN: 2583-2727 (Online) 

Volume 06 | Issue 01 | Jan.-Feb. | 2026 

  Journal homepage: https://gjrpublication.com/gjrecs/    
 

 Original Research Article 

Predictive Analytics and Self-Healing Systems Using Artificial Intelligence for Software 

Maintenance 
1Dr. Mukhtar Ibrahim Bello*, 2Bello Abubakr Imam, 3Abdulhamid Mahmoud Shariff, 4Shehu Hassan Ayagi,  
5Sani Ahmad Muhammad, and 6Kabir Dalha Kabir 

 
1,2,3,4,5,6 Department of Computer Science, Kano State Polytechnic 

DOI: 10.5281/zenodo.18601001                                                          Submission Date: 31 Dec. 2025 | Published Date: 10 Feb. 2026 

 

*Corresponding author: Dr. Mukhtar Ibrahim Bello 
Department of Computer Science, Kano State Polytechnic 

 

1. INTRODUCTION 
in an era marked by rapid technological advancement, the complexities of software systems continue to grow, 

necessitating innovative approaches to their maintenance. As organizations increasingly rely on software to drive their 

operations, the challenges associated with managing and sustaining these systems become more pronounced. Traditional 

maintenance strategies often struggle to keep pace with the dynamic nature of software environments, leading to 

increased downtime and diminished performance. This is where artificial intelligence (AI) enters the equation, offering 

transformative solutions through predictive analytics and self-healing systems. Predictive analytics harnesses vast 

amounts of data to identify patterns and forecast potential issues before they disrupt operations, while self-healing 

systems enable software to autonomously address and rectify malfunctions. Together, these technologies represent a 

paradigm shift in software maintenance, empowering organizations to enhance efficiency, reduce costs, and ensure 

seamless user experiences in an increasing digital landscape. 

 

Software maintenance is a critical phase in the Software Development Life Cycle (SDLC) that ensures the continued 

functionality, reliability, and relevance of software systems after their initial deployment [1]. Unlike the design and 
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development phases, which focus on creating software, maintenance addresses the ongoing challenges of fixing defects, 

optimizing performance, adapting to new requirements, and ensuring compatibility with evolving technologies [2]. 

 

 
 

Figure 1: SDLC Phases Highlighting AI Integration in the Maintenance Phase 

 
Traditional software maintenance, however, faces significant challenges. One of the primary issues is the high cost 

associated with maintenance activities, which can consume a substantial portion of the software’s total lifecycle budget 

[3, 4, 5]. Manual intervention in detecting and resolving issues is another challenge, often leading to delays and human 

errors [6, 7]. Furthermore, traditional methods struggle to adapt to dynamic and rapidly changing operating 

environments, making systems prone to failures and inefficiencies [8]. Software maintenance is a crucial phase in the 

Software Development Life Cycle (SDLC), ensuring that deployed systems remain functional, efficient, and adaptable to 

changing requirements. However, traditional approaches to software maintenance are fraught with numerous challenges 

[9]. These include the high cost of maintenance activities, reliance on manual processes, and difficulty in adapting to 

dynamic environments [10]. These limitations often lead to prolonged system downtimes, increased human error, and 

inefficiencies that hinder the overall performance and reliability of software systems [11]. In recent years, artificial 

intelligence (AI) technologies have emerged as transformative tools to address these challenges. AI-driven approaches, 

such as predictive analytics and self-healing systems, offer innovative solutions to reduce costs, minimize human 

dependency, and enhance system adaptability. Predictive analytics utilizes historical and real-time data to forecast 

potential issues, enabling proactive maintenance interventions. Similarly, self-healing systems leverage machine learning 

algorithms to detect and resolve performance bottlenecks autonomously, ensuring minimal disruption to system 

operations [12]. Software Maintenance in the SDLC Software maintenance is defined as the process of modifying and 

updating software applications after their initial deployment to correct faults, improve performance, and adapt to a 

changing environment [13]. It plays a pivotal role in ensuring the long-term functionality and reliability of software 

systems. Maintenance encompasses several activities, including error correction, performance optimization, and adapting 

the software to meet evolving user needs and technological advancements. The significance of software maintenance lies 

in its ability to extend the lifespan of software systems, ensuring their continued relevance and efficiency. Without proper 

maintenance, software can become obsolete, leading to operational disruptions, security vulnerabilities, and increased 

costs associated with system replacements [14]. 

 

2. METHODOLOGIES 
Research Design We use both qualitative and quantitative research designs in this study's mixed methods approach to 

provide a more thorough examination of AI-powered self-healing automation testing frameworks. This strategy aims to 

provide a more comprehensive understanding of the topic by combining the best elements of both approaches. Using case 

studies and industry reports, the qualitative method gathers insights. Researchers are able to gain a deeper understanding 

of the subtleties of present practice and the challenges encountered in implementing the self-healing system thanks to this 

method. By examining real-world instances, the qualitative analysis highlight’s themes and patterns that quantitative data 

can overlook, giving the results more context and nuance. This approach is particularly useful for understanding 

practitioners' and tech workers' subjective experiences. 

 

2.1 XGBoost and Application 
XGBoost is a machine learning algorithm based on gradient boosting, which is an ensemble technique that combines the 

predictions of multiple base learners (decision trees) to improve accuracy. XGBoost builds models by fitting a sequence 

of decision trees where each subsequent tree attempts to correct the errors made by the previous trees. Figure 2 below 

shows the architectural design and components of the XGBoost model. 
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Figure 2: XGBoost architectural design 
 

2.2 Gradient Boosting Framework 
The gradient boosting algorithm is formulated as follows:               𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖)

𝐾
𝑘=1  

 

Where: 

  𝑦̂𝑖 is the predicted output for the i-th instance, 

  𝑥𝑖 is the feature vector of the i-th instance, 

  𝑓𝑘(𝑥𝑖) is the output of the k-th base learner (decision tree), 

  𝐾 is the total number of base learners. 
 

The key idea in gradient boosting is to iteratively add new models (trees) to minimize a loss function. At each iteration, 

the algorithm fits the next model to the residual errors (the difference between actual and predicted values) produced by 

the existing ensemble of trees. 

 

2.3 Training Procedure 
1. Data Splitting: The dataset is first split into training, validation, and test sets, typically using a 70-15-15 split. 

2. Feature Engineering: Time-series data is aggregated to form features such as moving averages, sliding window 

statistics, and frequency domain features (Fourier transforms) to capture both short-term and long-term trends. 

3. Hyperparameter Tuning: Using cross-validation, key hyperparameters such as the learning rate, max depth, number 

of trees, and subsampling rate are optimized to minimize overfitting and improve generalization. 
 

3. RESULT 
Predictive analysis in the context of software maintenance leverages historical data to forecast future system behaviors 

and identify potential issues before they occur. By utilizing machine learning models, such as XGBoost, this approach 

aims to enhance the efficiency of software systems by providing actionable insights. In this section, we explore the 

application of predictive analytics to sensor data, evaluating the performance of the trained model and its ability to 

accurately predict future states, ultimately supporting the development of self-healing systems. 

Figure 5 and 6 presents the sensor readings for the first 100 cycles, along with the predicted values generated by the 

XGBoost model (represented by the red lines). The model was trained for 100 epochs and fine-tuned using both L1 and 

L2 regularization techniques to enhance its generalization capabilities and prevent overfitting. The plot shows that the 

model's predictions closely follow the actual sensor data, demonstrating a high degree of accuracy and reliability. No 

significant discrepancies or abnormalities are observed, indicating that the model is effectively capturing the underlying 

patterns in the time-series data. 
 

 

Figure 5: First 100 Cycles of the sensor readings 
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Figure 6: Second 200 Cycles of the sensor readings 

 

4. CONCLUSION 
In conclusion, the integration of artificial intelligence in software maintenance, particularly through predictive analytics 

and self-healing systems, marks a significant evolution in how organizations manage their IT infrastructure. By utilizing 

advanced data processing and machine behavior models, predictive maintenance enhances equipment reliability and 

operational efficiency, ultimately reducing downtime. The increasing reliance on interconnected machines and the flow 

of data necessitates a robust response; thus, the adoption of intelligent systems becomes indispensable for maintaining 

competitive advantage in today’s fast-paced technological landscape [15]. Furthermore, as we transition towards a 

Computing Continuum, where cloud, edge, and IoT converge, the potential for AI-driven solutions will only expand, 

providing organizations with novel opportunities to optimize their maintenance strategies [16]. Embracing these 

advancements will define the future trajectory of software maintenance, making it more proactive and resilient to 

evolving challenges. 

 

5. RECOMMENDATIONS 
1. Further Optimization of the RL Agent 

Although the RL agent performed well in fault detection and mitigation, there is room for further optimization. 

Enhancements to the agent’s learning algorithm could enable it to handle more complex fault scenarios, including 

those involving multiple concurrent failures or catastrophic system breakdowns. Exploring alternative reinforcement 

learning techniques, such as deep reinforcement learning or multi-agent systems, could potentially improve the 

agent’s decision-making capabilities. 

2. Implementation in Real-World Environments 

While the proposed model demonstrated success in a simulated environment, real-world testing would help validate 

its practicality and robustness. Deploying the self-healing system in an actual hydraulic rig would provide further 

insights into the system’s performance under varying operational conditions and identify areas for improvement. 

3. Continuous Monitoring and Feedback Loop 

Implementing a continuous monitoring system, which gathers feedback from real-time operations, would allow the 

RL agent to adapt dynamically to evolving system conditions. By incorporating new data and feedback, the agent 

can continuously improve its decision-making and healing process, leading to better long-term performance. 
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