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Abstract

This paper presents a self - starting block method for the direct solution of general second order initial value
problems of ordinary differential equations. The method was developed via interpolation and collocation of the
Lucas polynomial as basis function. A continuous linear multistep method was generated and was evaluated at
some desired points to give the discrete block method. The block method was investigated and was found to be
consistent, zero stable and convergent. The method was applied on some second order initial value problems of
ordinary differential equations and the performance was relatively better than those constructed by Awari et al and
Jator et al respectively.

Keywords: collocation, interpolation, Lucas polynomials, block method, discrete method, consistent, zero stable,
Convergent.

1. Introduction

Ordinary Differential Equations (ODEs) play a fundamental role in mathematical modeling across various scientific and
engineering disciplines. They describe how a function evolves over time based on its derivatives, making them essential
tools for analyzing dynamic systems. In this article, we propose the development of Second Derivative Block Linear
Multistep (SEDEBLIM) methods for the direct solution of second-order ordinary differential equations of the form:

"= (22", v(x)=2 . ¥ (%)=, xela,b] (1
where f satisfies the Lipschitz condition.

There are currently two well - known techniques for solving (1). The first is to reduce (1) to a system of first order
ordinary differential equation and then solve using predictor corrector or Runge-Kutta method. The second approach is to
solve (1) directly using the block method since it preserves the traditional advantage of one step methods, of being self-
starting and permitting easy Change of step length [7]. Its advantage over Runge-Kutta methods lies in the fact that they
are less expensive in terms of the number of functions evaluation for a given order [6] suggests that this equation, along
with its associated conditions, can be conventionally solved by reducing it to a first-order equivalent, which can then be
addressed using any suitable numerical method. Traditional numerical techniques like (Euler’s Method, Classical Runge-
Kutta Methods, Adams-Bashforth Methods, Backward Differentiation Formulas (BDF), Finite Difference Methods) often
convert second order differential equations into systems of first-order ODEs before applying standard solvers. However,
this transformation increases computational complexity, memory consumption, and function evaluations, making it less
efficient for large-scale problems [7]. Second derivative methods improve accuracy and stability by incorporating second
derivative information in solving ODEs.

Unlike conventional single-derivative techniques, these methods utilize both first and second derivatives, which reduce
truncation errors and enhances solution precision [5]. They are particularly effective for stiff ODE problems, where
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traditional solvers such as Euler’s method and classical Runge-Kutta methods struggle with stability and demand very
small step sizes [12], [5] further advanced second derivative methods by introducing a higher-order multistep scheme
designed specifically for stiff equations, improving both efficiency and stability in challenging computational
environments. To address these challenges, researchers have developed Second Derivative Block Linear Multistep
(SEDEBLIM) Methods, which solve second-order ODEs directly without converting them into first-order systems.

The improved Second-Derivative Block Linear Multi-Step (SEDEBLIM) methods have proven transformative across
multiple disciplines by efficiently solving complex second-order ODEs [17]. In physics, they enable high-fidelity
simulations of celestial mechanics, including spacecraft trajectory optimization and n-body gravitational systems, where
their simple structure preserves energy in long-term orbital integrations [15]. The methods also excel in quantum
dynamics and electromagnetic wave propagation, providing stable solutions to time-dependent Schrodinger equations
and Maxwell's equations in dispersive media. Engineering applications leverage SEDEBLIM's stability for critical
vibration analysis [4], from aircraft flutter prediction to seismic response modeling, while robotics and autonomous
systems employ them for real-time trajectory planning of mechanical systems [13]. In applied mathematics, these
methods advance biomechanical modeling of muscle-tendon dynamics and neuron activation patterns, while adapted
versions handle stochastic financial models.

The parallel architecture of SEDEBLIM methods particularly benefits large-scale problems, though challenges remain in
memory-efficient implementations for embedded systems and initialization of irregular domains. These diverse
applications demonstrate how SEDEBLIM methods bridge theoretical numerical analysis with cutting-edge
computational demands across scientific and industrial domains.

However, [3] argues that these conventional methods like the Adams and Runge- kutta methos fail to fully exploit all the
available information inherent in certain ordinary differential equations, particularly the oscillatory nature of their
solutions. Furthermore, as pointed out by [1] and [17], reducing these equations to first-order systems not only increases
their dimensionality but also adds substantial computational load, potentially compromising both accuracy and time
efficiency. [15]

2. Derivation of the method
Consider an approximate solution of (1) presented by the Lucas polynomials of degree m+t+s-1 of the form;

m+t+s—1

Y= ) cz(x), 2)

i=0
Where z; € R,y € C?(a,b),

The second derivative of (2) gives

m+t+s—1

Y=Y ¢z (0=f(xy(x).y'(x)) 3)

i=0

m is the interpolation point, while 1 and s are the collocation points of the first and second derivatives respectively.

Inspired by the idea of [5], we Interpolate (2) at X, , , and collocate its first and second derivatives at

xnw,v:()(l)k and X,
Ax=b

, respectively to obtain a nonlinear equation of the form;

Where,
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Solving (2) for Ci,S,i = 0(1) m+ t+s—1 using the matrix inversion technique and substituting the values of the cl.'s
obtained into (5) produces the continuous form of the Second Derivative Block Linear Multistep method of the form;
k
2
YE) =0, (X) Yt hz B X, . )+ hy,(X)g,. )
j=0

Where &, (X), B,(X) and 7;(X) are the continuous coefficients of the method.

Evaluating (4) at X,,,,V= O(l)k, except Kk —1, we obtain k discrete schemes. Putting together these discrete

schemes obtained from these evaluations yields 2k discrete block discrete schemes needed for the computations.
3. Specification of the method

Considering k = 4, the interpolation of (2) at the points ~7*¥=1  and collocating (4) at the points

XX, 15X, 0,X,.3 and x

N . X R .
> nt 2> n n+4 for the first derivative and collocating at ~"+* the second derivative, solving for the

c's o : : :
" and substituting in (2), leads to the continuous linear multistep method of the form

4
YX) =5 (X) Y5+ B, Y, ) FE Y (X80 (5)
Jj=0
Where,
a,=1
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Evaluating (6) at x=0,1,2, and 4 with h=x,,, —x, and the results substituted in (5), the following discrete

schemes were obtained

Vit =g s+ Vs =g M =3 W b g st

TR ARt RS R R Sy

Vo = V= o WG+ o W LB+ b =

Vi = Vs =3 W Gpss = o M+ M= W+ S Bt

8 =3 Son = et 3 o =3 fo = Era = .

8= fun e fua = foost e Fra =G &1 .

Gur =y fin =5 Fun o foa =y Fr g Gra o .

8uos = o= Fya = frs + e frs = Era =3, o

The new block method is of order (5, 5,5,5,5,5,5, S)T and error constant of

(1 19 11 41 26 42)T

Consistency
Following [7] and [12] the block method is consistent since it has order p >1.

Zero Stability

The schemes from (7) are said to be zero stable if the roots ﬂv,, r= 1,--.,7’1 of the first characteristic polynomial /3(2 ),
defined by

p(ﬂ)Z‘ﬂ*A(l)—A(O) )

=1 has multiplicity not exceeding power of the differential equation in the

Satisfies |Zr| <land every root with |Z,

limit as h—0.
Zero stability of the SEDEBLIM method k = 4

The Schemes from method k = 4 in (7) expressed in block form and in the stability polynomial (8) with particular
matrices indicated below as:
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Then as h — 0, substituting 4 and A” into (8) yields
1 0 -1 0 000 O
() =i x 0 0 -1 1 0 0 0 O 0 an
P50 0 1 0l |o o 0 -1
0 0 -1 0 0 0 0 O
A 0 -4 0
(/1)_0 0 -1 /1_0 .
PO 0 a4 a|” (12
0 0 -2 0

@ 2026 | PUBLISHED BY GJR PUBLICATION, INDIA



solving for A, gives:

From the block solution (8), we have

A=0 4,=0 4,=0

A,=0

and 4

A,r=1..n

(3
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|Zr| =1 has multiplicity not exceeding power of the differential equation in the limit as h — 0.

Convergence
According to [5], [6] and [7], the block method is convergent since it is consistent and zero stable.

4. Numerical Experiments
In this section, we implement the proposed method to solve two second order initial value problems of ordinary
differential equations and examine the efficiency and accuracy of the proposed block method. The absolute errors of the
test problems in [1] and [12] which are both of order six are compared with the proposed method.

Example 1

Consider the IVP y" =100y, y(0) =1, y'(0)=-10, 2 =0.01. With exact solution y(x) =e

shown in Table 1

Table 1. Results of problem 1, for 42 = 0.01

10x

this shows that our method is zero stable, since every root with

. with the results

X Exact Solution Results of proposed method Error in proposed method | Error in [1]
0.01 | 0.9048374180 | 0.90483741893184108670960969228 9.10x1071° 1.350%x1077
0.02 | 0.8187307531 | 0.818730755233739499551629180168 2.1x107° 3.660x1077
0.03 | 0.6703200460 | 0.740818224114721744742992770528 0.0704981781 6.050%x1077
0.04 | 0.6703200460 | 0.670320050450994483620061066424 4.5%107° 8.500x107"7
0.05 | 0.6065306597 | 0.60653066490708079456096127289 52%x107° 1.100x107%
0.06 | 0.5488116361 | 0.548811642357536372744375035708 6.3%x107° 1.370x107®
0.07 | 0.4965853038 | 0.496585311183850348227183893816 7.4%107° 1.450%x1078
0.08 | 0.4493289641 | 0.449328972491874070221893023437 8.4x%x107° 1.600x107°
0.09 | 0.4065696597 | 0.40656966901540922740490911720 93%x107° 1.760x107®
0.010 | 0.3678794412 | 0.367879451598760000329151955516 1.04%107% 1.950x107%

Example 2

Consider the IVP y" =y’ y(0)=0, y'(()) =—1, h=0.1 With exact solution as y"(x) =1—exp(x). with the

results shown in Table 2.

Table 2. Results of problem 2, for 7= 0.1

X Exact Solution Results of proposed method Error in proposed method | Error in [1]
0.1 | -0.105170918 | -0.105170916732651445270728063802 1.3x107° 335%x107°
0.2 | -0.221402758 | -0.221402754762468402134369498436 32%107° 330x10°°
0.3 | -0.349858808 | -0.349858801927299739598213921294 6.10x107° 1.23%1077
0.4 | -0.491824698 | -0.491824690007591650816714692705 8.0x107° 3.16x1077
0.5 | -0.648721271 | -0.648721260260093626911678618847 1.07x107% 6.59%1077
0.6 | -0.822118800 | -0.822118785997937910869631184123 1.40x107% 1.21x107°°
0.7 | -1.013752707 | -1.01375268873921299323928710937 1.8x1078 2.04%x107°
0.8 | -1.225540928 | -1.22554090571624692425252491969 2451081834 323%x107°
0.9 | -1.459603111 -1.45960308299644001044047903016 2.8%107% 4.88%x107°
0.10 | -1.718281828 -1.71828179307838295409220760139 3.5%107° 7.1%x107°
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Conclusion

The given result illustrates the desired behavior of a numerical solution, which is to resemble the theoretical solution of
the issue. It has been demonstrated in this research that the method used in this study may also be used to create
continuous collocation methods for solving Second order ordinary differential equations directly. This study presents a
new block approach (k = 4) that is stable and convergent. According to the findings of the instances given, our approach
outperformed those in [2], respectively.
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