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1. Introduction 
Ordinary Differential Equations (ODEs) play a fundamental role in mathematical modeling across various scientific and 

engineering disciplines. They describe how a function evolves over time based on its derivatives, making them essential 

tools for analyzing dynamic systems. In this article, we propose the development of Second Derivative Block Linear 

Multistep (SEDEBLIM) methods for the direct solution of second-order ordinary differential equations of the form: 
 

( ) ( ) ( )0 0 0 0'' , , ' , , ' ' , [ , ]y f x y y y x y y x y x a b= = =                     (1) 

 

where 𝑓 satisfies the Lipschitz condition.  

 

There are currently two well - known techniques for solving (1). The first is to reduce (1) to a system of first order 

ordinary differential equation and then solve using predictor corrector or Runge-Kutta method. The second approach is to 

solve (1) directly using the block method since it preserves the traditional advantage of one step methods, of being self-

starting and permitting easy Change of step length [7]. Its advantage over Runge-Kutta methods lies in the fact that they 

are less expensive in terms of the number of functions evaluation for a given order [6] suggests that this equation, along 

with its associated conditions, can be conventionally solved by reducing it to a first-order equivalent, which can then be 

addressed using any suitable numerical method. Traditional numerical techniques like (Euler’s Method, Classical Runge-

Kutta Methods, Adams-Bashforth Methods, Backward Differentiation Formulas (BDF), Finite Difference Methods) often 

convert second order differential equations into systems of first-order ODEs before applying standard solvers. However, 

this transformation increases computational complexity, memory consumption, and function evaluations, making it less 

efficient for large-scale problems [7]. Second derivative methods improve accuracy and stability by incorporating second 

derivative information in solving ODEs. 
 

Unlike conventional single-derivative techniques, these methods utilize both first and second derivatives, which reduce 

truncation errors and enhances solution precision [5]. They are particularly effective for stiff ODE problems, where 
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traditional solvers such as Euler’s method and classical Runge-Kutta methods struggle with stability and demand very 

small step sizes [12], [5] further advanced second derivative methods by introducing a higher-order multistep scheme 

designed specifically for stiff equations, improving both efficiency and stability in challenging computational 

environments. To address these challenges, researchers have developed Second Derivative Block Linear Multistep 

(SEDEBLIM) Methods, which solve second-order ODEs directly without converting them into first-order systems.  

 

The improved Second-Derivative Block Linear Multi-Step (SEDEBLIM) methods have proven transformative across 

multiple disciplines by efficiently solving complex second-order ODEs [17]. In physics, they enable high-fidelity 

simulations of celestial mechanics, including spacecraft trajectory optimization and n-body gravitational systems, where 

their simple structure preserves energy in long-term orbital integrations [15]. The methods also excel in quantum 

dynamics and electromagnetic wave propagation, providing stable solutions to time-dependent Schrödinger equations 

and Maxwell's equations in dispersive media. Engineering applications leverage SEDEBLIM's stability for critical 

vibration analysis [4], from aircraft flutter prediction to seismic response modeling, while robotics and autonomous 

systems employ them for real-time trajectory planning of mechanical systems [13]. In applied mathematics, these 

methods advance biomechanical modeling of muscle-tendon dynamics and neuron activation patterns, while adapted 

versions handle stochastic financial models.  

 

The parallel architecture of SEDEBLIM methods particularly benefits large-scale problems, though challenges remain in 

memory-efficient implementations for embedded systems and initialization of irregular domains. These diverse 

applications demonstrate how SEDEBLIM methods bridge theoretical numerical analysis with cutting-edge 

computational demands across scientific and industrial domains. 

 

However, [3] argues that these conventional methods like the Adams and Runge- kutta methos fail to fully exploit all the 

available information inherent in certain ordinary differential equations, particularly the oscillatory nature of their 

solutions. Furthermore, as pointed out by [1] and [17], reducing these equations to first-order systems not only increases 

their dimensionality but also adds substantial computational load, potentially compromising both accuracy and time 

efficiency. [15] 

 

2. Derivation of the method 
Consider an approximate solution of (1) presented by the Lucas polynomials of degree m+t+s-1 of the form; 

 
1

0

y(x) (x)
m t s

i i

i

c z
+ + −

=

=   ,         (2) 

Where  𝑧𝑖 ∈ ℝ, 𝑦 ∈ 𝐶2(𝑎, 𝑏),  

The second derivative of (2) gives  

( ) ( )( )
1

0

y (x) (x) , ,
m t s

i i

i

c z f x y x y x
+ + −

=

 = =        (3) 

 

m is the interpolation point, while t  and s  are the collocation points of the first and second derivatives respectively. 

Inspired by the idea of [5], we  Interpolate (2) at 1n kx + −  and collocate its first and second derivatives at  

( ), 0 1n vx v k+ =  and  n vx +  respectively to obtain a nonlinear equation of the form; 

                 Ax b=                         

 

Where, 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )
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     
     
     
     
     
     
     = =
     
     
     
     
     

       
     

       

 

Solving (2) for , 0(1) m t s 1ic s i = + + −  using the matrix inversion technique and substituting the values of the 
ic s

obtained into (5) produces the continuous form of the Second Derivative Block Linear Multistep method of the form;  

2

1 1

0

(x) (x) y (x) f(x , y ) (x)
k

k n k j n j n j k n k

j

y h h g  − + − + + +

=

= + +      (4) 

Where (x), (x)j j  and (x)j are the continuous coefficients of the method. 

Evaluating (4) at , v 0(1) kn vx + = , except 1k − , we obtain k  discrete schemes. Putting together these discrete 

schemes obtained from these evaluations yields 2k  discrete block discrete schemes needed for the computations. 

 

3. Specification of the method 

Considering k = 4, the interpolation of (2) at the points 1n kx + − , and collocating (4) at the points 

1 2 3 4, , ,n n n n nx x x x and x+ + + +  for the first derivative and collocating at n kx +   the second derivative, solving for the 

'ic s
and substituting in (2), leads to the continuous linear multistep method of the form 

 

4
2

3 3 4 4

0

(x) (x) y (x) f(x , y ) (x)n j n j n j n

j

y h h g  + + + +

=

= + +      (5) 

 

Where, 
 

0

2 3 4 5 6

0 2 3 4 5

2 3 4 5 6

1 2 3 4 5

2 3 4 5 6

2 2 3 4 5

3

1
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49280 924 1232 4224 6160 44352
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453

77

x h x x x x x
h h h h h

h x x x x x
h h h h h

h x x x x x
h h h h h











=

= − − + + − +

= − + − + + −

= − − + − + +

= − 2 4 5 6

2 3 4 5

3 4 5 6

4 2 4 5

2 3 4 5 6

4 2 3 4
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h x x x x x
h h h h h
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
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
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




                              (6) 
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Evaluating (6) at 0,1,2, 4x and=  with 1n nh x x+= −  and the results substituted in (5), the following discrete 

schemes were obtained 

1 3 1 2 3 4

1 17 19 1 17

90 45 15 90 45
n n n n n n ny hf y hf hf hf hf+ + + + + += + − − + +  

2

2 3 4 1 2 3 4

11 11 7 83 19 1831

288 1920 35 160 30 17280
n n n n n n n ny y h g hf hf hf hf hf+ + + + + + += − − + + − +   

2

3 4 1 2 3 4

3 201 7 99 9 149

32 640 5 160 10 640
n n n n n n n ny y h g hf hf hf hf hf+ + + + + += − + + + + −   

2

4 3 4 1 2 3 4

3 17 1 41 47 3133

32 5760 45 480 90 5760
n n n n n n n ny y h g hf hf hf hf hf+ + + + + + += − − + − + +

1 2 3 4 4

16 6 16 7 7

3 3 3 3
n n n n n n ng f f f f g f

h h h h h
+ + + + += − + − − −  

1 2 1 3 4 4

9 7 3 29 1 3

4 6 2 48 4 16
n n n n n n ng f f f f g f

h h h h
+ + + + + += − − + − −  

2 3 2 1 4 4

4 1 4 31 1 1

3 2 9 72 6 24
n n n n n n ng f f f f g f

h h h
+ + + + + += − − − + +     

3 1 2 3 4 4

1 3 1 37 1 1

6 4 6 48 4 48
n n n n n n ng hf f f f g hf

h h h
+ + + + + += − − + − −       (7) 

 

The new block method is of order ( )5,5,5,5,5,5,5,5
T

 and error constant of 

1 19 11 41 2 6 4 2
, , , , , , ,

756 10080 1120 30240 5 5 5 5

T

 
− − − − 
 

. 

 

Consistency 
Following [7] and [12] the block method is consistent since it has order 1p  . 

 

Zero Stability 

The schemes from (7) are said to be zero stable if the roots , 1,...,r r n =  of the first characteristic polynomial ( )z


, 

defined by 

     ( ) ( ) ( )1 0
* A A  = −       (8) 

Satisfies 1rz  and every root with 1rz =  has multiplicity not exceeding power of the differential equation in the 

limit as h→0. 

 

Zero stability of the SEDEBLIM method k = 4 
The Schemes from method k = 4 in (7) expressed in block form and in the stability polynomial (8) with particular 

matrices indicated below as: 
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1 3

2 2

3 1

4

1 17 19 17

90 45 15 45
 1 0 1 0  0 0 0 0 1831 19 83 7

0 0 1 1 0 0 0 0 17280 30 160 135

0 0 1 0 0 0 0 1 49 9 99 7

640 10 160 50 0 1 0 0 0 0 0

3133 47 41 1

5760 90 480 45
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n n
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y y

y y
h
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+
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      + +
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− −      
−      

− − −

1 3 1

2 2 22

3 1 3
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1
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11

11 0 0 0
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-3
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0 0 0 32
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3
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n n n

n n n
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f f g

f f g
h h

f f g

f f g

+ − +

+ − +
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+ +

  
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                         + +           −                
      

   

3

22

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

n

n

n

n

g

g
h

g

g

−

−

−


 
 
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 
 

  
  
  +
  
  

   

 (9) 

where, 

(1)

(0) (1)

(0)

1 17 19 17

90 45 15 45
 1 0 1 0  0 0 0 0 1831 19 83 7

0 0 1 1 0 0 0 0 17280 30 160 135
, ,B ,

0 0 1 0 0 0 0 1 49 9 99 7

640 10 160 50 0 1 0 0 0 0 0

3133 47 41 1

5760 90 480 45

1
0 0 0

90

11
0 0 0

1

A

A

B

=

 
− 

 −   
 − −   

−  
   = =  
   −  − −   

 −   
 
 − − −
 

−

= (1) (0)

0 0 0 0

11 0 0 0 00 0 0
288 0 0 0 0920

,G ,G-3
201 0 0 0 00 0 0

0 0 0 32
640 0 0 0 0

3
17 0 0 0

0 0 0 32
5760

 
  
  

   
   
  = = 
   −        

    
 

              (10) 

Then as ℎ → 0, substituting 
(1)A  and 

(0)A into (8) yields 

 1 0 1 0  0 0 0 0

0 0 1 1 0 0 0 0
( ) 0

0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 0

  

−   
   

−
   =  − =
   −
   

−   

     (11) 

0 0

0 0
( ) 0

0 0 1

0 0 0

 

 
 





−

−
= =

−

        (12) 
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solving for 𝜆, gives: 1 0 =
, 2 0 =

 , 3 0 =
 and 4 0 =

 

From the block solution (8), we have 
, 1,...,r r n =

 this shows that our method is zero stable, since every root with 

1rz =  has multiplicity not exceeding power of the differential equation in the limit as h → 0. 

 

Convergence 
According to [5], [6] and [7], the block method is convergent since it is consistent and zero stable. 

 

4. Numerical Experiments 
In this section, we implement the proposed method to solve two second order initial value problems of ordinary 

differential equations and examine the efficiency and accuracy of the proposed block method. The absolute errors of the 

test problems in [1] and [12] which are both of order six are compared with the proposed method. 

 

Example 1 

Consider the IVP 100 ,y y = (0) 1,y = (0) 10,y = − 0.01.h =  With exact solution ( ) 10 .xy x e−=  with the results 

shown in Table 1 
 

Table 1. Results of problem 1, for ℎ = 0.01 

x  Exact Solution Results of proposed method Error in proposed method Error in [1] 

0.01 0.9048374180 0.90483741893184108670960969228 109.10 10−  
71.350 10−  

0.02 0.8187307531 0.818730755233739499551629180168 92.1 10−  
73.660 10−  

0.03 0.6703200460 0.740818224114721744742992770528 0.0704981781  
76.050 10−  

0.04 0.6703200460 0.670320050450994483620061066424 94.5 10−  
78.500 10−  

0.05 0.6065306597 0.60653066490708079456096127289 95.2 10−  
81.100 10−  

0.06 0.5488116361 0.548811642357536372744375035708 96.3 10−  
81.370 10−  

0.07 0.4965853038 0.496585311183850348227183893816 97.4 10−  
81.450 10−  

0.08 0.4493289641 0.449328972491874070221893023437 98.4 10−  
81.600 10−  

0.09 0.4065696597 0.40656966901540922740490911720 99.3 10−  
81.760 10−  

0.010 0.3678794412 0.367879451598760000329151955516 81.04 10−  
81.950 10−  

 

Example 2 

Consider the IVP ,y y = (0) 0,y = ( )0 1,y = − 0.1h = With exact solution as (x) 1 exp(x).y = −  with the 

results shown in Table 2. 
 

Table 2. Results of problem 2, for ℎ = 0.1 

x  Exact Solution Results of proposed method Error in proposed method Error in [1] 

0.1  -0.105170916732651445270728063802 91.3 10−  
93.35 10−  

0.2 -0.221402758  
93.2 10−  

83.30 10−  
0.3  -0.349858801927299739598213921294 96.10 10−  

71.23 10−  
0.4 -0.491824698 -0.491824690007591650816714692705 98.0 10−  

73.16 10−  
0.5 -0.648721271 -0.648721260260093626911678618847 81.07 10−  

76.59 10−  
0.6 -0.822118800 -0.822118785997937910869631184123 81.40 10−  

61.21 10−  
0.7  -1.01375268873921299323928710937 81.8 10−  

62.04 10−  
0.8  -1.22554090571624692425252491969 2.451081834 63.23 10−  
0.9   

82.8 10−  
64.88 10−  

0.10   
83.5 10−  

67.1 10−  
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5. Conclusion 
The given result illustrates the desired behavior of a numerical solution, which is to resemble the theoretical solution of 

the issue. It has been demonstrated in this research that the method used in this study may also be used to create 

continuous collocation methods for solving Second order ordinary differential equations directly. This study presents a 

new block approach (k = 4) that is stable and convergent. According to the findings of the instances given, our approach 

outperformed those in [2], respectively. 

 

REFERENCES 
1. Areo, E., & Adeniyi, R. (2013). A self-starting linear multistep method for direct solution of initial value problem of 

second order ordinary differential equation. International Journal of Pure and Applied Mathematics, 82(3), 345–

364. 

2. Awari, Y. S., Chima, E. E., Kamoh, N. M., & Oladele, F. L. (2014). A family of implicit uniformly accurate order 

block integrators for the solution of second order differential equations. International Journal of Mathematics and 

Statistics Invention (IJMSI), 2, 34–46. 

3. Awoyemi, D. O. (1999). A class of continuous method for general second order initial value problems in ordinary 

differential equations. International Journal of Computer Mathematics, 72, 29–37.  

https://doi.org/10.1080/00207169908804832 

4. Beards, C. (1995). Engineering vibration analysis with application to control systems. Elsevier. 

5. Cash, J. R. (1981). Second derivative extended backward differentiation formulas for the numerical integration of 

stiff systems. SIAM Journal on Numerical Analysis, 18(1), 21–36. 

6. Dahlquist, G. (1956). Convergence and stability in the numerical integration of ordinary differential equations. 

Mathematica Scandinavica, 4, 33–56. https://doi.org/10.7146/math.scand.a-10454 

7. Fatunla, S. O. (1991). Block method for second order ordinary differential equations. International Journal of 

Computer Mathematics, 41(1–2), 55–63. 

8. Henrici, P. (1962). Discrete variable methods in ordinary differential equations. John Wiley & Sons. 

9. Jator, S., & Li, N. (2009). A self-starting linear multistep method for the direct solution of general second order 

initial value problem. International Journal of Computer Mathematics, 86(5), 827–836. 

10. Kamoh, N. M., Abada, A. A., & Soomiyol, M. C. (2018). A block procedure with continuous coefficients for the 

direct solution of general second order initial value problems of ODEs using shifted Legendre polynomials as basis 

function.  

11. Lambert, J. D. (1973). Computational methods in ordinary differential equations. John Wiley & Sons. 

12. Lambert, J. D. (1991). Numerical methods for ordinary differential systems: The initial value problem. Wiley. 

13. Njuguna, J. (2007). Flutter prediction, suppression and control in aircraft composite wings as a design prerequisite: 

A survey. Structural Control and Health Monitoring, 14(5), 715–758. 

14. Okunuga, S. A., & Ehigie, J. (2009). A new derivation of continuous collocation multistep methods using power 

series as basis function. Journal of the Nigerian Association of Mathematical Physics, 14, 105–116. 

15. Omole, E. O., Obarhua, F. O., Familua, A. B., & Shokri, A. (2023). Algorithms of algebraic order nine for 

numerically solving second-order boundary and initial value problems in ordinary differential equations. 

International Journal of Mathematics in Operational Research, 25(3), 343–368. 

16. Tsuda, Y., & Scheeres, D. J. (2010). Numerical method of symplectic state transition matrix and application to fully 

perturbed Earth orbit. Transactions of the Japan Society for Aeronautical and Space Sciences, 53(180), 105–113. 

17. Ukpebor, L. A. (2019). A 4-point block method for solving second order initial value problems in ordinary 

differential equations. American Journal of Computational and Applied Mathematics, 9(3), 51–56. 

18. Yakubu, D. G., Adelegan, L., Momoh, A. L., Kumleng, G. M., & Shokri, A. (2023). Two–step second derivative 

block hybrid methods for the integration of initial value problems. Journal of the Nigerian Mathematical Society, 

42(2), 67–95. 

CITATION 

Adiku. L, Kamoh N.M, & Chollom J.P. (2026). Block Second Derivative Methods for the Direct Solution of Second 

Order Initial Value Problems of (ODEs) Using Lucas Polynomials as Basis Function. In Global Journal of Research 

in Engineering & Computer Sciences (Vol. 6, Number 1, pp. 119–125). https://doi.org/10.5281/zenodo.18605436 

 

https://doi.org/10.1080/00207169908804832
https://doi.org/10.7146/math.scand.a-10454
https://doi.org/10.5281/zenodo.18605436

