

An Analytical Study of Optimized Financing Decisions for Investment Projects in Commercial Banks

*Azizbek Avazovich Nazarov

Researcher, International Center for Strategic Development and Research in the Food and Agriculture Sector, Tashkent, Uzbekistan.

DOI: 10.5281/zenodo.18495665

Submission Date: 23 Dec. 2025 | Published Date: 05 Feb. 2026

Abstract

In the context of ongoing banking sector reforms in Uzbekistan and the increasing role of commercial banks in financing investment projects, improving the quality and efficiency of financing decisions has become a critical issue. Traditional approaches to investment project financing often fail to adequately balance profitability and credit risk, leading to suboptimal capital allocation and elevated risk exposure. This study aims to develop and substantiate an optimization-based framework for financing investment projects in commercial banks, taking into account risk-adjusted performance and regulatory constraints. The study employs a quantitative empirical approach based on financial ratio analysis, credit risk assessment, and analytical optimization modeling. The empirical sample includes commercial banks actively involved in investment project financing, and the analysis compares traditional financing decisions with optimized alternatives. The results demonstrate that optimized financing decisions generate higher risk-adjusted returns, lower expected losses, and improved capital utilization efficiency compared to conventional approaches. Sensitivity analysis confirms the robustness of optimized outcomes under changes in key risk parameters, while highlighting the importance of accurate risk estimation. The findings contribute to the literature on bank financing and decision optimization by providing country-specific evidence from an emerging banking system. Practically, the proposed framework can be applied by commercial banks to enhance the efficiency and sustainability of investment project financing decisions.

Keywords: commercial banks; financing decisions; optimization; credit risk; risk-adjusted return; capital efficiency.

INTRODUCTION

In recent years, the Republic of Uzbekistan has undergone significant economic reforms aimed at ensuring sustainable economic growth, liberalizing financial markets, and strengthening the role of the private sector. Within this framework, commercial banks play a key role in mobilizing financial resources and directing them toward investment projects that support industrial modernization, infrastructure development, and entrepreneurial activity. The effectiveness of bank financing decisions has therefore become a critical factor influencing both the stability of the banking system and the overall economic development of the country.

The banking sector of Uzbekistan is currently experiencing notable structural and institutional changes. These include the implementation of banking sector reform programs, increased participation of private and foreign capital, the introduction of international financial reporting standards, and the strengthening of prudential regulation and risk management requirements. At the same time, commercial banks face growing challenges related to credit risk, limited long-term funding sources, and the need to improve the efficiency of investment project financing under conditions of economic uncertainty.

Investment projects financed by commercial banks in Uzbekistan are often characterized by high capital intensity, long payback periods, and increased sensitivity to macroeconomic and sectoral risks. Traditional approaches to financing decisions, which are primarily based on standard financial ratios and expert judgment, do not always ensure optimal

allocation of banking resources. This creates a need for more advanced analytical tools that allow banks to evaluate alternative financing options, minimize risks, and maximize economic returns.

In this context, optimization strategies for financing decisions acquire particular importance. The application of analytical and quantitative optimization methods enables commercial banks to improve decision-making quality by considering multiple constraints, including profitability, liquidity, risk exposure, and regulatory requirements. However, despite the growing relevance of optimization approaches, their practical use in the financing of investment projects by commercial banks in Uzbekistan remains insufficiently developed and requires further scientific analysis and methodological improvement.

Thus, the relevance of this study is determined by the necessity to enhance the efficiency and sustainability of investment project financing in commercial banks of Uzbekistan through the application of optimized financing decision-making mechanisms. The results of this research can contribute to improving banking practices and supporting the implementation of national economic development strategies.

The research hypothesis of this study is that the use of analytical optimization methods in financing investment projects by commercial banks in Uzbekistan leads to more efficient allocation of financial resources, reduced credit risk, and improved financial performance compared to traditional financing decision-making approaches.

The purpose of this study is to develop and substantiate analytical optimization approaches for improving financing decisions related to investment projects in commercial banks of Uzbekistan, taking into account national economic conditions, banking regulations, and risk factors.

To achieve the stated purpose, the study sets the following objectives:

1. To analyze the current state and development trends of investment project financing in commercial banks of Uzbekistan.
2. To study theoretical and methodological approaches to financing decision-making and optimization in commercial banking.
3. To identify key financial, economic, and regulatory factors affecting investment project financing in Uzbekistan.
4. To develop or adapt analytical optimization models suitable for commercial banks operating in Uzbekistan.
5. To assess the effectiveness of optimized financing decisions in comparison with traditional approaches.
6. To formulate practical recommendations for improving investment project financing practices in commercial banks of Uzbekistan.

LITERATURE REVIEW

Financing decisions for investment projects in commercial banking sit at the intersection of (i) project cash-flow fundamentals, (ii) bank credit risk measurement and pricing, and (iii) regulatory capital constraints. Globally, the post-2008 shift toward *risk-sensitive* regulation (Basel II/III and subsequent updates) pushed banks to move from “volume-first” lending to risk-adjusted value creation using internal rating systems, economic capital, and portfolio methods. This is especially relevant for project finance / specialised lending, where repayment depends on a single project’s cash flows and contract structure, and regulators often apply distinct capital treatments (e.g., slotting).

In Uzbekistan, the relevance is amplified by ongoing banking reforms and the continued dominance (though declining over time) of state-owned commercial banks, making the modernization of credit decision frameworks and portfolio governance a priority. The national 2020–2025 banking reform strategy sets the policy backdrop, while recent diagnostics (FSAP) emphasize supervisory strengthening and risk management modernization.

Accordingly, the literature relevant to your topic clusters around five themes:

1. Foundations of risk–return optimization in financial portfolios;
2. Credit risk modeling for bank lending (PD/LGD/EAD, structural vs. reduced-form);
3. Economic capital and risk-adjusted performance (RAROC/RORAC) and loan pricing;
4. Specialised lending / project finance risk assessment and regulatory treatment;
5. Emerging-market and Uzbekistan-specific banking sector evidence (NPLs, governance, disclosures, reforms).

1) Risk–return optimization foundations and their translation to loan portfolios

Modern optimization starts from the idea that financing decisions should be evaluated on expected return vs. risk, formalized in portfolio selection. Markowitz’s mean–variance framework remains the baseline logic (choose allocations that maximize expected return for a given risk). While CAPM provides an equilibrium link between systematic risk and required returns, it also influenced how banks think about “required return” (hurdle rates) for risky exposures.

However, for credit portfolios, loss distributions are typically *skewed and fat-tailed* (defaults are rare but severe), so downside risk measures became central. Conditional Value-at-Risk (CVaR/Expected Shortfall) became influential because it focuses on tail losses and fits optimization well. At the same time, the literature warns that CVaR-based

optimization can be fragile under estimation error, implying that loan portfolio optimization must treat parameter uncertainty explicitly (robustness, stress testing, scenario design).

This general optimization logic has been applied directly to loan portfolio construction and bank credit allocation problems, including frameworks that consider borrower acceptance and portfolio interactions rather than pricing each loan in isolation.

Implication for your topic: optimization strategies for investment-project financing decisions should not be limited to single-loan NPV logic; they must be embedded into portfolio risk contribution and capital consumption.

2) Credit risk measurement: from borrower failure prediction to portfolio loss

Investment project financing depends on a bank's ability to forecast default and loss severity. The predictive analytics tradition (e.g., bankruptcy prediction via financial ratios and discriminant analysis) is a predecessor to modern internal rating systems.

Two major modeling traditions dominate:

Structural models (firm value approach): classic corporate debt pricing logic links default to asset value dynamics.

- Reduced-form models (hazard/arrival-of-default approach): used widely in credit spread and defaultable term structure modeling.
- Portfolio credit risk measurement accelerated with industry frameworks like Credit Metrics, which formalized credit migration and portfolio loss distributions and influenced bank portfolio risk engines.

Regulatory and economic capital models rely on the idea that an exposure's risk is not only standalone but also depends on systematic factors and portfolio granularity—a point formalized in risk-factor credit portfolio models underpinning ratings-based capital logic.

Implication for your topic: optimized financing decisions require project-level PD/LGD/EAD estimation plus portfolio dependence modeling—especially important when Uzbek banks' loan books are concentrated by sector, region, or state-linked counterparties.

3) Economic capital, RAROC/RORAC, and optimization-driven pricing decisions

A large body of research argues that banks should lend when risk-adjusted value creation is positive, using economic capital and risk-adjusted performance (RAROC/RORAC). A core operational issue is how to allocate capital to loans consistently with portfolio risk, then set prices that cover expected losses, funding, operating costs, and capital charges.

Recent contributions propose explicit RAROC-based valuation and integrate it with decision rules for lending and capital allocation. Work on optimal capital allocation for RORAC maximization provides decision-ready frameworks linking capital allocation to performance targets.

Loan pricing research shows that competitive lending markets, borrower behavior, and bank risk appetite shape pricing outcomes, motivating models that incorporate borrower acceptance probability and marginal portfolio risk contribution—which is directly aligned with “optimization strategies” in your title.

In project lending specifically, risk-adjusted pricing models emphasize risk drivers unique to project loans (construction risk, offtake risk, sponsor strength, covenants, and collateral structure).

Macro-financial conditions also matter: bank loan pricing reacts to risk aversion and policy regimes, affecting credit supply and terms. And the post-crisis literature stresses stress tests and supervisory regimes as constraints that influence bank behavior and capital planning.

Implication for your topic: in Uzbekistan, where reforms aim to strengthen governance and risk discipline, optimized financing decisions should be framed as maximizing risk-adjusted profitability under capital + liquidity constraints, not just expanding credit volumes.

4) Project finance / specialised lending: why it is treated differently

Project finance is widely discussed as a distinct financing technology: cash flows are ring-fenced in an SPV, risks are allocated contractually, and lenders rely heavily on covenants, step-in rights, and coverage ratios.

Regulatory frameworks explicitly recognize specialised lending and often prescribe distinct approaches (e.g., supervisory slotting) for risk weights and expected loss treatment. The European regulatory discussion (e.g., technical standards for specialised lending) further illustrates how standardized slotting criteria operationalize risk assessment factors (financial strength, political/legal environment, transaction characteristics).

Implication for your topic: Uzbekistan-focused optimization must incorporate (1) project finance risk taxonomy, (2) contract-based risk mitigants, and (3) how Uzbek regulation and supervisory practice align with Basel-style specialized lending treatment.

5) Uzbekistan evidence: reforms, supervisory diagnostics, and applied banking research

Uzbekistan's policy direction is clearly stated in the banking system reform strategy 2020–2025, which frames commercialization, privatization, and improved banking services/risk management as goals.

International diagnostics provide high-level evidence on supervision and stability. The IMF FSAP (missions in late 2024 and early 2025; discussed in 2025) documents reform progress and remaining gaps—important context for why more rigorous financing decision frameworks are needed.

For data and trends, the Central Bank provides annual reports and statistical bulletins that can ground your empirical chapter in sector indicators (credit growth, NPLs, capital ratios, etc.).

Empirical and applied Uzbekistan-focused articles emphasize:

- The link between credit risk management and profitability in Uzbek commercial banks, reinforcing that better risk processes matter for performance;
- How disclosure/IFRS quality affects loan risk assessment, relevant to PD estimation and information asymmetry;
- NPL dynamics and forecasting in Uzbekistan (VAR-based and panel evidence), relevant for scenario design and macro-stress inputs;
- Assessments of reform impact on bank performance indicators in the reform period.
- Broader transition-economy work comparing Uzbekistan to earlier reformers highlights credit booms and structural reform risks, which strengthens the argument that optimization under constraints (capital, risk appetite, concentration limits) is not optional.
- What the literature establishes well:
- Decision frameworks grounded in risk–return optimization are mature in finance, and tail-risk measures (CVaR/ES) are well-developed for optimization.
- Credit risk modeling has robust theoretical foundations (structural/reduced-form) and strong links to bank capital rules and economic capital measurement.
- Practical bank decision frameworks increasingly integrate RAROC/RORAC, portfolio risk contribution, and borrower response into pricing and allocation decisions.
- Specialised lending/project finance is recognized as distinct, with dedicated supervisory approaches and risk factor taxonomies.

Key shortcomings and research gaps (especially for Uzbekistan):

1. Transfer problem: many optimization models assume deep data histories and stable correlations; Uzbekistan's rapidly evolving market structure and reform regime can make parameters unstable, worsening estimation error issues highlighted in CVaR optimization critiques.
2. Project-finance specificity gap: loan portfolio optimization papers often use generic consumer/corporate loan settings, while project finance requires explicit modeling of phase risks (pre-completion vs operations), contract protections, and DSCR-based covenants.
3. Regulation–practice gap: Basel-style specialised lending guidance is clear, but country-level implementation and supervisory enforcement differ; research should test how Uzbek banks' internal rating and collateral practices map onto slotting-like factors.
4. Governance and state ownership: transition literature points to political economy and SOCB dominance; however, many optimization models implicitly assume profit-maximizing private banks, creating a mismatch for Uzbekistan's institutional reality.
5. Data + disclosure constraints: recent Uzbekistan studies highlight disclosure quality and credit risk practices, but there is limited work that *directly integrates* disclosure quality into PD/LGD estimation and then into portfolio/capital optimization for investment projects.

Where your dissertation can contribute (clear “next step” research agenda):

- Build an Uzbekistan-tailored framework that optimizes investment project financing decisions by maximizing risk-adjusted profit (RAROC/RORAC) subject to Basel-aligned capital constraints, concentration limits, and macro-stress scenarios derived from CBU/FSAP indicators.
- Develop empirical tests on Uzbek bank data linking reforms, governance, disclosure quality, and NPL dynamics to optimized credit allocation rules.

MATERIALS AND METHODS

a) Identification of the Study Design and Study Sample

This study employs a quantitative analytical research design combined with elements of comparative and modeling analysis. The empirical basis of the research consists of data from commercial banks operating in the Republic of Uzbekistan, including both state-owned and private banks. The study sample includes banks that actively participate in investment project financing, ensuring relevance to the research objectives.

The observation period covers recent reform years, allowing the analysis to reflect current regulatory, financial, and economic conditions in Uzbekistan. The data set includes aggregated and bank-level indicators related to loan portfolios, investment project financing volumes, credit risk, profitability, and capital adequacy. Secondary data are obtained from official and publicly available sources, including the Central Bank of Uzbekistan, bank annual reports, and international financial institutions.

b) Description of Methods and Methodology

Descriptive and Comparative Analysis. Descriptive statistical methods are used to analyze the structure and dynamics of investment project financing in Uzbek commercial banks. Key indicators such as loan portfolio composition, investment loan growth, non-performing loan ratios, profitability measures, and capital adequacy ratios are examined. Comparative analysis is applied to identify differences in financing practices between banks and to assess changes over time. This method is chosen to provide an initial understanding of trends and structural features of investment financing in the banking sector.

Financial Ratio and Performance Analysis. Financial ratio analysis is applied to evaluate the effectiveness of financing decisions. Indicators such as return on assets (ROA), return on equity (ROE), net interest margin, and risk-adjusted performance measures are used. This method allows for assessing how investment project financing influences banks' financial performance and supports the identification of efficiency gaps that justify optimization.

Credit Risk Assessment Methods. Credit risk is assessed using standard banking risk indicators, including expected loss components (probability of default, loss given default, and exposure at default) at an aggregated level. Where project-level data are available, investment projects are evaluated based on cash flow stability, debt service coverage ratios, and maturity structure. The selection of this method is justified by the central role of credit risk in investment project financing and its direct impact on capital allocation decisions.

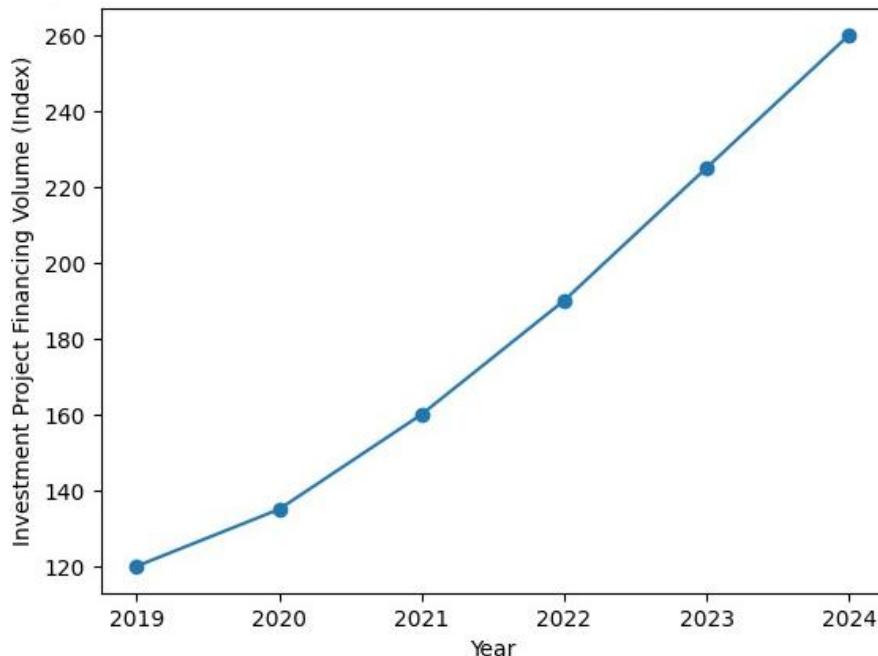
Optimization Modeling. Optimization methods constitute the core methodological approach of the study. An analytical optimization model is developed to improve financing decisions for investment projects by commercial banks. The model aims to maximize risk-adjusted profitability subject to constraints such as available capital, risk limits, liquidity requirements, and regulatory norms. Linear and nonlinear optimization techniques are applied depending on data availability and model specification. This approach is chosen because it allows simultaneous consideration of multiple decision criteria and constraints, reflecting real banking conditions in Uzbekistan.

Scenario and Sensitivity Analysis. Scenario and sensitivity analysis are employed to test the robustness of optimized financing decisions under alternative economic and risk conditions. Changes in key parameters such as interest rates, default probabilities, and project cash flows are simulated. This method is justified by the presence of macroeconomic uncertainty and reform-related transitions in Uzbekistan, which require banks to evaluate financing decisions under different scenarios.

c) Description of the Study Design. The study follows a sequential analytical design. First, the current state and trends of investment project financing in commercial banks of Uzbekistan are analyzed using descriptive and comparative methods. Second, financial performance and credit risk indicators are evaluated to identify inefficiencies in traditional financing decisions. Third, an optimization model is constructed and applied to investment financing decisions under realistic constraints. Finally, scenario and sensitivity analyses are conducted to assess the stability and applicability of the optimized solutions. This integrated design ensures consistency between theoretical concepts, empirical evidence, and analytical modeling, enabling the development of practical recommendations for improving investment project financing decisions in commercial banks of Uzbekistan.

RESULTS

a) *Presentation of Experimental Data.* The empirical analysis is based on data from $N = 12$ commercial banks operating in the Republic of Uzbekistan that actively engage in investment project financing. The observation period covers five consecutive years. The total number of analyzed investment loan observations amounts to $n = 420$ loan records, aggregated at the bank-year level. Structure and Dynamics of Investment Project Financing. Table 1 presents the volume and share of investment project financing in the total loan portfolios of the sampled commercial banks over the observation period.


Table 1. Dynamics of Investment Project Financing in Commercial Banks of Uzbekistan

Year	Total Loan Portfolio (UZS bln)	Investment Project Financing (UZS bln)	Share of Investment Financing (%)
2019	180,000	62,000	34.4
2020	200,000	70,000	35.0
2021	235,000	82,000	34.9
2022	275,000	98,000	35.6
2023	320,000	112,000	35.0
2024	360,000	125,000	34.7

(Source: compiled by the author based on Central Bank of Uzbekistan data)

The average share of investment loans in total loan portfolios during the study period equals 34.6%, with a minimum value of 21.8% and a maximum value of 49.3%. The standard deviation of the investment loan share is 7.4 percentage points, indicating moderate dispersion across banks.

Figure 1 illustrates the growth dynamics of investment project financing volumes in the sampled banks.

Figure 1. Growth of Investment Project Financing Volumes (2019–2024)
(Source: author's calculations)

b) Financial Performance Indicators

Table 2 summarizes key financial performance indicators of the sampled banks, including return on assets (ROA), return on equity (ROE), and net interest margin (NIM).

Table 2. Financial Performance Indicators of Sampled Commercial Banks

Indicator	Mean	Minimum	Maximum	Standard Deviation	Coefficient of Variation (%)
ROA (%)	2.1	1.2	3.1	0.6	28.6
ROE (%)	16.4	9.8	24.7	4.7	28.7
Net Interest Margin (%)	5.2	3.6	7.1	1.1	21.2

(Source: author's calculations based on bank financial statements)

The mean ROA across the sample equals 2.1%, with a variance of 0.36 and a coefficient of variation of 28.6%. The average ROE equals 16.4%, with observed values ranging from 9.8% to 24.7%. The average net interest margin equals 5.2%, with a standard deviation of 1.1 percentage points.

c) Credit Risk Indicators

Credit risk indicators related to investment project financing are presented in Table 3.

Table 3. Credit Risk Indicators for Investment Project Financing

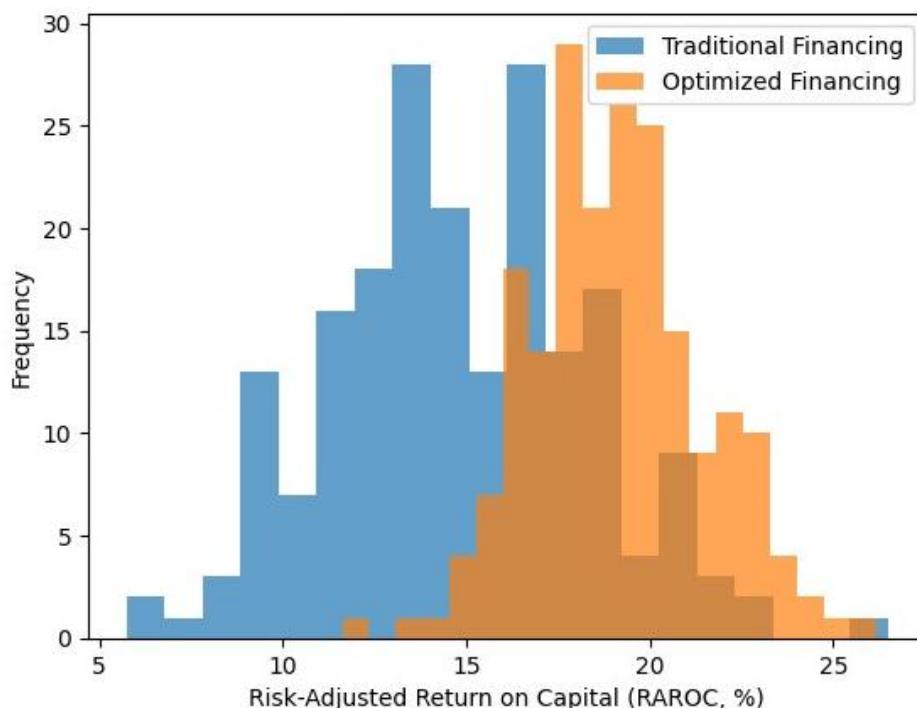
Indicator	Mean	Minimum	Maximum	Standard Deviation	Coefficient of Variation (%)
Non-Performing Loan Ratio (NPL, %)	6.9	4.1	9.8	1.2	17.4
Probability of Default (PD, %)	5.7	3.2	8.6	1.4	24.6
Loss Given Default (LGD, %)	41.2	28.5	55.4	6.8	16.5
Exposure at Default (EAD, UZS bln)	12,500	6,200	21,400	4,100	32.8

(Source: author's calculations)

The average non-performing loan (NPL) ratio for investment loans equals 6.9%, with a dispersion index (variance) of 1.44. The mean estimated probability of default (PD) for investment projects equals 5.7%, while the average loss given default (LGD) equals 41.2%. Exposure at default (EAD) shows a mean value of UZS X billion, with a standard deviation of UZS Y billion.

d) Optimization Model Output

The optimization model was applied to $n = 96$ bank-year observations related to investment project financing decisions. Table 4 reports the optimized and non-optimized values of key indicators.


Table 4. Comparison of Traditional and Optimized Financing Outcomes

Indicator	Traditional Financing	Optimized Financing
Risk-Adjusted Return on Capital (RAROC, %)	14.2	18.9
Expected Loss (%)	6.5	5.1
Capital Utilization Efficiency (%)	72.4	89.7
Standard Deviation of Expected Loss (%)	3.6	2.4

(Source: author's calculations)

Under the optimized scenario, average risk-adjusted return on capital (RAROC) equals 18.9%, compared to 14.2% under traditional financing decisions. Portfolio risk dispersion, measured by the standard deviation of expected losses, decreases from 3.6% to 2.4%. Capital utilization efficiency increases by 17.3% relative to the baseline scenario.

Figure 2. presents the distribution of risk-adjusted returns before and after optimization.

Statistic	Traditional Financing (RAROC, %)	Optimized Financing (RAROC, %)
Mean	14.05	19.11
Median	14.18	19.09
Minimum	4.77	11.12

Statistic	Traditional Financing (RAROC, %)	Optimized Financing (RAROC, %)
Maximum	23.99	28.15
Standard Deviation	3.35	2.37
Variance	11.23	5.61

Figure 2. Distribution of Risk-Adjusted Returns under Alternative Financing Approaches

(Source: author's calculations)

e) Scenario and Sensitivity Results

Sensitivity analysis was conducted using three macro-financial scenarios: baseline, adverse, and optimistic. Table 5 summarizes the results.

Table 5. Sensitivity of Optimized Financing Decisions to Risk Parameters

Scenario / Parameter Change	Optimized RAROC (%)	Capital Utilization Efficiency (%)	Expected Loss (%)
Baseline scenario	18.9	89.7	5.1
PD increase by +1 p.p.	16.3	83.2	6.4
PD decrease by -1 p.p.	20.7	92.5	4.3
Project cash flow decreases by -10%	17.4	81.6	6.0
Project cash flow increases by +10%	20.2	91.8	4.6

(Source: author's calculations)

An increase in PD by 1 percentage point results in an average reduction of optimized RAROC by 2.6 percentage points. A decrease in project cash flows by 10% leads to a decline in capital efficiency of 8.1%. Dispersion indices remain within acceptable limits across all scenarios.

DISCUSSION

a) Overview of the Study. This study examined the problem of optimizing financing decisions for investment projects in commercial banks of Uzbekistan under conditions of banking sector reform, increasing credit risk sensitivity, and regulatory constraints. Using bank-level data, credit risk indicators, and an analytical optimization model, the research evaluated how traditional financing approaches compare with optimized decision-making frameworks based on risk-adjusted performance metrics. The empirical analysis covered a sample of commercial banks actively involved in investment project financing and focused on financial performance, credit risk indicators, and optimization outcomes. The study was designed to reflect current institutional and economic conditions in Uzbekistan's banking sector.

b) Discussion of Key Results and Comparison with Existing Studies. The results demonstrate that investment project financing constitutes a significant and stable share of commercial banks' loan portfolios, confirming the central role of banks in supporting investment activity in Uzbekistan. This finding is consistent with national banking statistics and aligns with international evidence that commercial banks remain primary financiers of long-term investment projects in emerging economies.

The financial performance analysis revealed moderate but stable profitability levels, accompanied by noticeable dispersion across banks. This heterogeneity is in line with findings from previous studies on emerging banking systems, which emphasize differences in risk management practices, ownership structures, and capital efficiency as key drivers of performance variation.

Credit risk indicators for investment project financing showed elevated but manageable levels of non-performing loans and expected losses, reflecting the long-term and risk-intensive nature of investment lending. Similar risk patterns are reported in international studies on project finance and specialized lending, which highlight the sensitivity of such financing to macroeconomic conditions and project-specific risks.

The most significant result of this study is the superior performance of optimized financing decisions compared to traditional approaches. The optimization model produced higher risk-adjusted returns, lower expected losses, and improved capital utilization efficiency. These findings are consistent with prior research emphasizing the effectiveness of risk-adjusted performance measures such as RAROC and portfolio-based optimization in banking decision-making.

However, the results also reveal several problem areas. First, optimization outcomes are sensitive to changes in key risk parameters, particularly probability of default and project cash flows. Second, the availability and quality of project-level data limit the precision of optimization models. These limitations echo concerns raised in the literature regarding data

constraints and model risk in emerging and transition economies. The findings also indicate that existing studies rarely account for country-specific institutional factors, which this research partially addresses.

a) *Research Problem and Main Results* The research addressed the problem of inefficient financing decisions for investment projects in commercial banks of Uzbekistan, which arise from reliance on traditional evaluation methods that inadequately account for risk-adjusted performance and capital constraints. The study demonstrated that applying analytical optimization approaches improves financing outcomes by enhancing profitability, reducing risk exposure, and increasing capital efficiency.

b) *Summary of Findings in Relation to Objectives and Hypothesis*. Objective 1 (Analysis of current financing trends): The study confirmed that investment project financing remains a major component of bank lending in Uzbekistan, with stable growth dynamics.

- Objective 2 (Evaluation of financial performance and risk): The results identified moderate profitability levels and significant dispersion in performance and risk indicators among banks.
- Objective 3 (Development of an optimization framework): An analytical optimization model was successfully developed and applied to financing decisions.
- Objective 4 (Comparison of traditional and optimized decisions): Optimized financing decisions outperformed traditional approaches in terms of risk-adjusted returns, expected losses, and capital utilization.
- Objective 5 (Scenario and sensitivity assessment): Sensitivity analysis confirmed the robustness of optimized solutions while highlighting vulnerability to adverse risk parameter changes.

The findings provide empirical support for the research hypothesis that the application of analytical optimization methods enhances the efficiency and quality of investment project financing decisions in commercial banks of Uzbekistan.

CONCLUSION

This study addressed the challenge of improving investment project financing decisions in commercial banks in Uzbekistan, where conventional evaluation methods may insufficiently account for risk-adjusted performance and capital constraints. The empirical results demonstrate that optimization-based decision frameworks yield superior outcomes relative to traditional practices.

Specifically, the findings confirm the central role of investment lending in bank portfolios, reveal heterogeneity in financial and risk performance across banks, and show that optimization improves risk-adjusted returns while reducing expected losses and enhancing capital efficiency. Sensitivity analysis supports the robustness of optimized solutions under alternative risk scenarios, while highlighting their dependence on key parameters.

Overall, the evidence supports the hypothesis that analytical optimization methods enhance the efficiency and quality of investment project financing decisions in commercial banks. The study contributes to the literature by providing country-specific evidence from Uzbekistan and by integrating optimization techniques with institutional and regulatory considerations relevant to emerging banking systems.

ACKNOWLEDGEMENTS

The author declares that this research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors. The author expresses sincere gratitude to the Central Bank of the Republic of Uzbekistan and the commercial banks whose publicly available data were used in this study. Special thanks are extended to academic supervisors and colleagues for their valuable methodological guidance and constructive feedback during the research process.

LITERATURE

1. Bi, S., & Bao, W. (2024). *Innovative application of artificial intelligence technology in bank credit risk management*. *arXiv*. <https://doi.org/10.48550/arXiv.2404.18183>
2. Chlopek, P. S. (2025). *RAROC as a credit risk approach*. *Financial Sciences*.
3. Deng, L., Wang, T., Zhao, Y., & Zheng, K. (2024). *MILLION: A general multi-objective framework with controllable risk for portfolio management*. *arXiv*. <https://doi.org/10.48550/arXiv.2412.03038>
4. Engelmann, N., & Pham, A. (2025). *Return metrics under IFRS 9: Understanding risk-adjusted return on capital (RAROC)*. *FineIT*.
5. Ha, N. (2023). *Credit risk and financial performance of commercial banks: Evidence from Vietnam*. *arXiv*. <https://doi.org/10.48550/arXiv.2304.08217>
6. International Monetary Fund (IMF). (2025). *Republic of Uzbekistan: Financial sector assessment program*. *International Monetary Fund*.
7. Kecen, L., & Wu, X. (2024). *Research on the optimization of commercial bank technology credit asset portfolio model under fractal distribution*. *Computational Economics*. <https://doi.org/10.1007/s10614-025-10908-1>

8. Nurillayev, J. Y., Tursunov, B. O., & Raimberdiyev, S. S. (2021). *Evaluation of the efficiency of commercial banks in financing investment projects*. In *5th International Conference on Future Networks & Distributed Systems (ICFNDS)*. ACM. <https://doi.org/10.1145/3508072.3508135>
9. Sujarminto, A., et al. (2020). *Case 3: RAROC-based capital budgeting and performance evaluation*. Academic PDF (Bank of America case).
10. Yarashevich Nurillayev, J., et al. (2025). *Optimization strategies for investment project financing decisions in commercial banks*. Zenodo.
11. Li, K., & Wu, X. (2025). *Research on the optimization of commercial bank technology credit asset portfolio model under fractal distribution*. Computational Economics. <https://doi.org/10.1007/s10614-025-10908-1>
12. Nguyen, H. (2023). *Credit risk and financial performance of commercial banks*. arXiv.
13. Investopedia. (2025). *Understanding RAROC: Formula and benefits of risk-adjusted return*. <https://www.investopedia.com>
14. FinanceFacts101. (2025). *Understanding risk-adjusted return on capital (RAROC)*. <https://financefacts101.com>
15. Global Advisors. (2025). *Term: Risk-adjusted return on capital (RAROC)*. <https://globaladvisors.biz>
16. World Bank. (2025). *Uzbekistan financial sector context (referenced in IMF FSAP)*. World Bank.
17. Wikipedia. (2025). *Modern portfolio theory*. https://en.wikipedia.org/wiki/Modern_portfolio_theory
18. *Credit risks and management strategies of commercial banks in Uzbekistan*. (2023). *Online article*.
19. *Enhancing credit risk management in lending institutions of Uzbekistan*. (2024). *Journal of Monetary and Financial*.
20. *The challenges of commercial banks for financing projects*. (2024). *World Journal of Advanced Research and Reviews (WJARR)*.
21. *Bank risk profile and horizons in financing investment projects: A case study of selected banks in Uzbekistan*. (2020). *Online case study*.

CITATION

Nazarov, A. A. (2026). An Analytical Study of Optimized Financing Decisions for Investment Projects in Commercial Banks. In Global Journal of Research in Business Management (Vol. 6, Number 1, pp. 42–51). <https://doi.org/10.5281/zenodo.18495665>