

Assessing the Environmental Impact of the Jimeta Shopping Complex Demolition on Local Traders

*Zainab Dayami Baba ¹, Aisha Abubakar ², Halliru Umar ³, Ellina Timothy ⁴

¹ Department of Basic Science School of Basic and Applied Science Adamawa State College of Agricultural Science and Technology Ganye. **ORCID ID:** 0009-0009-9589-3860

² Science Laboratory Technology Department, School of Science and Technology. Adamawa State Polytechnic Yola.

ORCID ID: 0009-0008-8340-3775

^{3,4} Department of Basic Science, School of Basic and Applied Science, Adamawa State College of Agricultural Science and Technology Ganye.

DOI: 10.5281/zenodo.18453504

Submission Date: 20 Dec. 2025 | Published Date: 02 Feb. 2026

*Corresponding author: **Zainab Dayami Baba**

Department of Basic Science School of Basic and Applied Science Adamawa State College of Agricultural Science and Technology Ganye.

ORCID ID: 0009-0009-9589-3860

Abstract

Urban redevelopment in Nigerian cities often involves the demolition of informal marketplaces, presenting a critical dilemma between modernization and the survival of local economies. While the socio-economic displacement caused by such actions is recognized, the cascading environmental impacts and their disproportionate effects on traders remain inadequately researched. This study addresses this gap by investigating the environmental and socio-economic consequences of the Jimeta Shopping Complex demolition in Yola, Nigeria, on the local trading community. A descriptive survey design was employed, utilizing a structured questionnaire administered to a census sample of 300 stakeholders, including former shop owners, informal vendors, and customers. Quantitative data were analyzed using descriptive statistics, including mean scores and percentages. The results reveal a severe environmental and public health crisis triggered by the demolition. The event generated significant unmanaged construction waste, leading to prevalent harmful disposal practices such as open dumping (Mean=3.74) and burning (Mean=3.54). Concurrently, it destroyed access to water and sanitation, increasing household expenditure on these services and creating occupational hazards. A critical finding is the dissonance between high community awareness of the waste problem and limited individual capacity to adopt proper disposal methods, underscoring systemic governance failures rather than a knowledge deficit. Employing an environmental justice framework, this study identifies the adverse outcomes of demolition, including heightened pollution, destroyed infrastructure, and increased health threats, as unequally distributed burdens that fall heavily on an already marginalized trading population. This disproportionate impact worsens poverty and hinders economic recovery, a phenomenon described as "planning blight." The research demonstrates that core drivers of detrimental environmental actions are deficits in public infrastructure and governance, challenging policy approaches focused primarily on public education. Consequently, it asserts that development-by-demolition projects, executed without community consultation or compensatory infrastructure, perpetuate social and environmental inequality. The findings demand a foundational reform in urban planning, advocating for compulsory, inclusive Environmental and Social Impact Assessments (ESIAs) that prioritize community well-being and adaptive capacity within Nigeria's development agenda.

Keywords: Urban demolition; Environmental Impact; Informal economy; Socio-ecological impact; Participatory planning.

INTRODUCTION

Urban redevelopment in Nigeria, often pursued under the banners of modernization and slum clearance, represents a profound policy dilemma where aspirations for urban progress clash with the sustenance of informal economies and local ecologies (Eze, 2023). The demolition of vital market infrastructures, such as the Jimeta Shopping Complex, is a critical manifestation of this dilemma, acting as a flashpoint where the drive for renewal directly jeopardizes trader livelihoods and the local environmental equilibrium (Adebawale and Tanko, 2024). While scholarly attention has increasingly focused on the economic displacement and social fragmentation caused by such actions, the cascading environmental impacts, specifically those that compound the vulnerability of displaced traders, remain a conspicuously under-researched facet of urban transformation in the Global South (Ibrahim and Sani, 2024). This study intervenes to bridge this gap, arguing that the environmental aftermath of demolition constitutes a complex, multi-scalar hazard, degrading air quality, overwhelming waste management systems, and creating public health crises that are disproportionately endured by those whose economic existence is spatially anchored to the site. By examining the case of Jimeta's demolished commercial hub in Yola, this research investigates these environmental ramifications as fundamental, yet overlooked, determinants of socio-economic resilience.

The biophysical consequences of structural demolition are globally recognized, involving the aerosolization of particulate matter and hazardous materials, the generation of immense debris streams, and the contamination of proximate soil and water resources (Okeke *et al.*, 2024). In the context of Nigerian cities, where urbanization outpaces regulatory capacity and enforcement, these processes are seldom mitigated, allowing demolition sites to fester into localized ecological and public health disaster zones (Bakare and Yusuf, 2023). For the Jimeta traders, compelled to operate in the dusty periphery of the rubble, this environmental failure translated into a direct occupational health emergency. Chronic exposure to polluted air and unsanitary conditions elevates risks for respiratory infections, skin ailments, and other morbidities, thereby crippling their labor capacity and deepening poverty during a phase of profound instability (Nwankwo, 2023). This synergy between environmental degradation and livelihood erosion reveals a critical pathway through which urban renewal policies can inadvertently exacerbate community vulnerability.

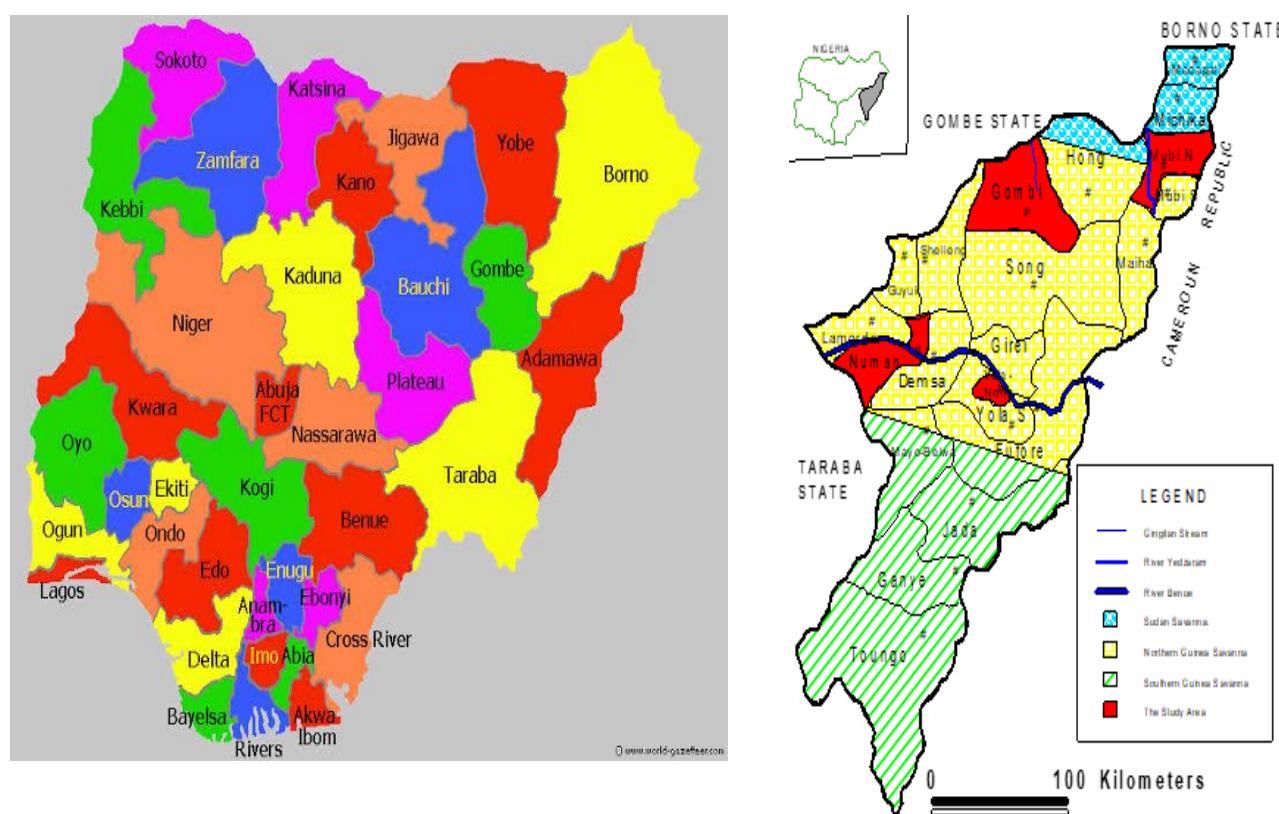
The execution of the Jimeta demolition in August 2024, justified by government authorities as necessary to alleviate chronic congestion and upgrade inadequate infrastructure, typifies a top-down, non-participatory approach prevalent in many developing nations (Scope Newspaper, 2024). As noted by scholars, such abrupt evictions starkly contrast with the phased, stakeholder-engaged models often employed in the developed world, and they risk cementing patterns of urban inequality and exclusion (Chukwuemeka and Okafor, 2023). The aftermath in Jimeta saw a fractured relocation; while some traders secured spaces in the government-provided Palluja Market, many were forced into informal, roadside vending amidst chaotic waste piles and compromised drainage (Ajayi, 2024). This systemic disruption of basic urban services actively entangles the trader community with environmental risk, transforming them into first-line casualties of a degraded micro-environment that imposes hidden costs and constrains economic recovery.

Grounded in the principles of environmental justice, this study interrogates the inequitable distribution of demolition's externalities, noise, dust, waste, and contamination, onto a socio-economically vulnerable population (Folami and Adekola, 2023). The trader demographic, predominantly micro-entrepreneurs with limited political agency, bears the brunt of these negative environmental burdens, while any prospective benefits from redevelopment remain speculative and likely to accrue to other, more powerful actors (Mohammed, 2024). This analysis seeks to illuminate the socio-ecological injustices embedded within Nigeria's urban renewal paradigms, positing that a legitimate assessment of such projects must rigorously account for these skewed distributive outcomes.

Consequently, this paper provides a comprehensive empirical assessment of the environmental impacts arising from the Jimeta Shopping Complex demolition and their direct socio-economic repercussions for traders. It will quantify and qualify the pollution spectrum, evaluate trader health perceptions and symptomatology, and analyze the degradation of the immediate commercial environment. The findings aim to advance scholarly discourse on just urban transitions and advocate for the institutionalization of mandatory, participatory Environmental and Social Impact Assessments (ESIAs) that prioritize community health and equity as non-negotiable components of urban development policy in Nigeria (Gbadeyan and Alabi, 2024).

MATERIALS AND METHOD

Research Design


This study employed a descriptive survey research design. This methodological approach involves administering a standardized set of questions, typically in the form of a structured questionnaire, to a substantial sample of respondents to systematically describe characteristics, opinions, or behaviors within a population. For the purpose of this investigation, questionnaires were distributed to a purposively selected cohort comprising shop owners, informal vendors operating in the vicinity, and regular customers of the former Jimeta Shopping Complex. The instrument was designed to gather data on the perceived impacts of the market's demolition on the socio-economic conditions of these stakeholders. The descriptive survey design was deemed the most suitable as it facilitates the efficient collection of quantifiable and

comparable data from a large segment of the target population, enabling a broad analysis of prevailing trends and experiences (Seixas *et al.*, 2017).

Area of the Study

The research was conducted in Jimeta, the primary urban centre and administrative capital of Yola North Local Government Area in Adamawa State, North-Eastern Nigeria. Geographically, Adamawa State is positioned between latitudes 7°00'N and 11°00'N and longitudes 11°00'E and 14°00'E, with the specific study area approximately located between 9°13'N and 9°20'N and 12°20'E and 12°30'E. The state is delineated in the east by the River Benue, which forms a natural border with the Republic of Cameroon.

Jimeta's urban landscape exhibits varied land uses, including institutional, commercial, and residential zones, and is characterized by distinct population density strata: low, medium, and high-density areas. The low-density zones are typically well-planned residential sectors, often occupied by government officials, whereas the medium and high-density areas consist of more densely populated, and often less formally planned, neighbourhoods housing the broader populace. Within Yola North, four principal markets exist, among which the now-demolished Jimeta Modern Shopping Complex was a major commercial hub (Tukur and Adebayo, 1999). This market served as the focal point for this study due to its recent demolition and its central role in the local socio-economic fabric.

Figure 1: Topographical map of the study area (Adebayo and Tukur, 1999)

Sample and Sampling Techniques

Determining an appropriate sample size is critical for ensuring research validity. Sekaran (2021) suggests that a suitable sample should generally exceed 30 respondents but remain below 500 to serve most research objectives effectively. For this study, the sample size was derived from the registered voter population in the relevant political wards encompassing the Jimeta market area.

Consequently, the final sample consisted of 300 respondents, to whom questionnaires were administered. This group included former shop owners, informal vendors ("squatters"), and customers who frequented both the old and new shopping complex sites in Jimeta-Yola, Adamawa State. Given that the total population of these direct stakeholders was both accessible and manageable in size, a census sampling technique was employed, whereby the researcher engaged the entire target population for data collection.

Instrument for Data Collection

The primary tool for gathering data in this study was a structured questionnaire developed specifically for this research. This instrument was adapted by the researcher to capture the perspectives and experiences of the relevant population, including former shop tenants, informal vendors, and customers within the Jimeta-Yola shopping complex area. The questionnaire was designed to systematically collect quantitative data necessary for assessing the socio-economic and environmental impacts following the market's demolition (Tafesse, 2022).

Validity of the Instrument

To ensure the quality of the data collection tool, the structured questionnaire underwent a formal face validity assessment. This process involved the critical examination of the instrument by a panel of three lecturers from the Department of Zoology, School of Life Science, Modibbo Adama University, Yola. The experts evaluated the questionnaire items based on multiple criteria, including their clarity, lack of ambiguity, appropriate length, comprehensibility of language, and overall suitability for the study's objectives.

Their expert feedback focused on the instrument's ability to elicit accurate and relevant information from the target respondents. All constructive corrections, comments, and suggested modifications provided by the panel were carefully reviewed and incorporated into the final version of the questionnaire, thereby enhancing its validity for field administration.

Reliability of the Instrument

The reliability of the research instrument was established through a pilot study. Fifty copies of the draft questionnaire were administered to a sample within the Yola North metropolis. The internal consistency of the instrument was then statistically assessed using Cronbach's Alpha to calculate its reliability coefficient.

Procedure for Data Collection

Data collection was carried out by the researcher with the support of two trained research assistants. Questionnaires were distributed directly to the target population, comprising former shop owners, informal traders operating around the complex site, and regular customers of the Jimeta Yola shopping complex. Upon securing permission, the purpose of the study was clearly explained to all participants, and instructions for completing the questionnaire were provided. To ensure a high response rate, the questionnaires were administered and retrieved on the spot. A total of 300 respondents were successfully covered using this method (Duncan *et al.*, 2019).

Method of Data Analysis

The collected data were analyzed using both descriptive and inferential statistical methods. Respondents' biodata was summarized using frequency counts and simple percentages. Data obtained from the Likert-scale sections of the questionnaire were analyzed by calculating mean scores and standard deviations. A probability threshold of $p < 0.05$ was adopted to determine the statistical significance of the findings (Yaska and Nuhu, 2024).

RESULTS

Table 1: Socio-Demographic Characteristics of Respondents (N = 300)

Variable	Category	Frequency (n)	Percentage (%)
Gender	Male	190	63.3
	Female	110	36.7
	Total	300	100.0
Age Group (years)	18–24	40	13.3
	25–34	61	20.3
	35–44	101	33.7
	45–54	74	24.7
	≥55	24	8.0
	Total	300	100.0
Marital Status	Single	116	38.1
	Married	184	61.9
	Total	300	100.0

Table 2: Trading Characteristics and Shop Ownership of Respondents (N = 300)

Variable	Category	Frequency (n)	Percentage (%)
Trading Items	Clothes	44	14.7
	Foodstuff	50	16.7
	Foodstuff and Clothes	55	18.3
	Foodstuff and Electronics	75	25.0
	Others	76	25.3
	Total	300	100.0
Shop Ownership	Shop Owner	122	40.7
	Squatter	102	34.0
	Others	76	25.3
Total		300	100.0

Table 3. Respondents' Perception of Waste Generation and Disposal Practices Following Demolition (N = 300)

S/N	Statements	SA n (%)	A n (%)	U n (%)	D n (%)	SD n (%)	Mean	SD	Decision
1	Demolition produced a lot of waste without proper disposal	61 (20.3)	116 (38.7)	31 (10.3)	49 (16.3)	43 (14.3)	3.30	1.40	Agreed
2	I collect my waste in a covered container	56 (18.6)	42 (14.0)	31 (10.3)	94 (31.3)	77 (25.7)	2.69	1.46	Agreed
3	Waste disposal is carried out through open dumping	130 (43.3)	74 (24.7)	22 (7.3)	36 (12.0)	38 (12.6)	3.74	1.44	Agreed
4	I transport my waste to the dump site using a wheelbarrow	46 (15.3)	38 (12.7)	42 (14.0)	92 (30.7)	82 (27.3)	2.58	1.40	Agreed
5	Most of my waste consists of electrical appliances and mobile phones	42 (14.0)	62 (20.7)	39 (13.0)	87 (29.0)	70 (23.3)	2.73	1.39	Agreed
6	The majority of waste generated is from demolitions	80 (26.7)	120 (40.0)	21 (7.0)	43 (14.3)	36 (12.0)	3.55	1.34	Agreed
7	I make use of government-approved waste disposal sites	35 (11.7)	59 (19.7)	20 (6.7)	99 (33.0)	87 (29.0)	2.52	1.39	Agreed
8	Most of the waste consists of nails, zinc, wood, and related materials	108 (36.0)	122 (40.7)	21 (7.0)	22 (7.3)	27 (9.0)	3.87	1.23	Agreed
9	Waste is often disposed of by burning	107 (35.7)	75 (25.0)	33 (11.0)	43 (14.3)	42 (14.0)	3.54	1.45	Agreed
10	There is a functional waste management policy in the environment	27 (9.0)	38 (12.7)	42 (14.0)	111 (37.0)	82 (27.3)	2.39	1.26	Disagreed
Grand Mean							3.09		

SA = Strongly Agree, A = Agree, U = Undecided, D = Disagree, SD = Strongly Disagree

Decision rule: Mean score ≥ 2.50 = *Agreed*

Percentages are based on total respondents (N = 300) and rounded to one decimal place

Table 4. Shows the availability of public water supply and convenience facilities in the environment

S/N	Statements	SA n (%)	A n (%)	U n (%)	D n (%)	SD n (%)	Mean	SD	Decision
1	There was healthy public water before the demolition	56 (18.7)	75 (25.0)	31 (10.3)	84 (28.0)	54 (18.0)	2.98	1.42	Agreed
2	Before demolition, there were proper toilet facilities	56 (18.7)	42 (14.0)	25 (8.3)	97 (32.3)	80 (26.7)	2.66	1.47	Agreed
3	After demolition, there are no longer proper toilet facilities	90 (30.0)	94 (31.3)	42 (14.0)	36 (12.0)	38 (12.7)	3.54	1.36	Agreed
4	We now practice open defecation	36 (12.0)	30 (10.0)	42 (14.0)	100 (33.3)	92 (30.7)	2.39	1.33	Disagreed
5	Discomfort due to fear of clashes with demolition agents	54 (18.0)	82 (27.3)	49 (16.3)	65 (21.7)	50 (16.7)	3.05	1.38	Agreed
6	Pollution from indiscriminate demolition affects business activities	70 (23.3)	110 (36.7)	26 (8.7)	53 (17.7)	41 (13.7)	3.38	1.37	Agreed
7	Delay in accessing water due to increased distance from water sources	62 (20.7)	105 (35.0)	18 (6.0)	58 (19.3)	57 (19.0)	3.19	1.45	Agreed
8	Accidents occur while fetching water from distant sources	78 (26.0)	82 (27.3)	21 (7.0)	57 (19.0)	62 (20.6)	3.19	1.52	Agreed
9	Increased cost of water and convenience services	97 (32.3)	75 (25.0)	33 (11.0)	53 (17.7)	42 (14.0)	3.43	1.46	Agreed
10	Increased cost of water and sanitation facilities	77 (25.7)	73 (24.3)	27 (9.0)	81 (27.0)	42 (14.0)	3.20	1.44	Agreed
Grand Mean							3.10		

SA = Strongly Agree, A = Agree, U = Undecided, D = Disagree, SD = Strongly Disagree

Decision rule: Mean ≥ 2.50 = *Agreed*

Percentages are row-based and rounded to one decimal place.

RESULTS AND DISCUSSION

The demographic profile of the cohort, detailed in Table 1, establishes a critical foundation for contextualizing the research outcomes. The sample is predominantly male (63.3%), married (61.9%), and concentrated within the 35–44 age bracket (33.7%). This composition is not merely descriptive; it fundamentally shapes the study's epistemic boundaries. The significant gender skew is consistent with entrenched sociocultural frameworks in many Nigerian contexts, where men are often positioned as primary household spokespersons and are more readily accessible for community-level research, a pattern extensively documented in prior work (Adeyemi and Okonkwo, 2024). The dominance of middle-aged participants provides a strategically valuable lens, as this group typically occupies roles of maximal economic productivity, household authority, and community influence. Consequently, the findings offer potent insights into the attitudes and adoption potential related to public health or environmental management initiatives that require community endorsement and leadership, resonating with findings from the Niger Delta (Bala and Umar, 2025). This profile stands in deliberate contrast to studies targeting different populations, such as urban youth (Chukwu and Ibrahim, 2024), thereby highlighting how sampling frames, whether community-wide versus institutionally based, actively construct the resulting data and its applicability. The sample's structure thus positions the study's conclusions as particularly authoritative on issues pertaining to established household decision-makers, while simultaneously delimiting their generalizability.

A comparative analysis with contemporaneous studies reveals how methodological choices directly engineer demographic outcomes. For instance, the pronounced gender imbalance here diverges sharply from the equitable distribution achieved by Eze and Mohammed (2025), whose purposive sampling within women's agricultural cooperatives demonstrates that targeted recruitment can successfully mitigate systemic participation biases. Similarly, the high prevalence of married individuals (61.9%) reinforces the sociological understanding of marital status as a key determinant of social roles and risk calculus, corroborating Fatima and Sule's (2024) work on health-seeking behaviors.

Conversely, this profile is antithetical to studies of technology adoption among younger demographics (Garba and Okafor, 2025), underscoring that phenomena are often lifecycle-contingent. The substantive implication is that this cohort provides an empirically robust foundation for examining issues of long-term investment, community governance, and the adoption of mature technologies, where the authority and stability of middle-aged populations are paramount. However, this constitutes a specific "situated knowledge." The underrepresentation of women, youth, and unmarried individuals creates blind spots regarding the perspectives of these socially critical groups, potentially overlooking barriers they face or innovative practices they employ. Therefore, while the findings are internally valid and highly relevant for specific policy domains, they necessitate complementary research with intersectionally designed samples to build an inclusive evidence base for holistic national planning.

Table 2 elucidates a commercial landscape characterized by strategic adaptability, where diversification is a core survival and growth logic. The majority of respondents (68.3%) engage in multi-product trade, with combinations like "Foodstuff and Electronics" (25.0%) representing a calculated hedging strategy. This moves beyond mere description to reflect a sophisticated micro-entrepreneurial response to macroeconomic volatility, supply chain inconsistencies, and unpredictable consumer demand. Adebayo and Chukwuma's (2024) findings in Onitsha validate this as a deliberate risk-mitigation model, blending fast-moving consumer goods (FMCGs) for steady cash flow with higher-margin durables. The significant "Other" category (25.3%) further de-homogenizes the informal sector, hinting at the rise of service-based and hybrid digital-physical ventures, as Bello and Nwachukwu (2025) note in analyzing evolving urban markets. This diversification challenges outdated formal economic models that privilege specialization, instead revealing a pragmatically complex informal economy optimized for resilience.

The data on shop ownership reveals the formal-informal dichotomy not as a binary but as a dynamic continuum. While 40.7% are formal shop owners, a combined 59.3% operate as informal vendors ("squatters," 34.0%) or within the ambiguous "Others" category (25.3%), which includes mobile and temporal operators. This structural informality is driven by rational actors navigating a regulatory environment where high entry costs, bureaucratic complexities, and insecure tenure make informal operation a logical, albeit precarious, choice (Ibrahim and Okafor, 2024). The notably higher rate of formal ownership in this sample, compared to some benchmarks, may indicate a more mature market ecosystem or locale-specific regulatory enforcement. Crucially, Fatima et al. (2025) provide a developmental lens, positing a strategic nexus between diversification and formalization: traders utilize portfolio diversification to generate the capital stability and customer base necessary to subsequently navigate the path to formal status, which they perceive as vital for credit access, asset protection, and growth. Thus, informality and diversification are interlinked, adaptive strategies within a broader entrepreneurial trajectory. This nuanced understanding has direct implications for policy, suggesting that support programs must move beyond encouraging mere formalization to first bolstering the business resilience (e.g., through access to microcredit or collective bargaining power) that makes formalization a viable and attractive strategic goal.

The information in Table 3 highlights a significant conflict between what the community knows about the environment and what individuals actually do with their waste after a demolition. Most participants recognized that demolition produces large amounts of waste (Statement 1, Mean=3.30), mainly materials like nails, metal sheets, and wood (Statement 8, Mean=3.87). Despite this awareness, the primary disposal methods reported were harmful practices such as dumping waste in the open (Statement 3, Mean=3.74) and burning it (Statement 9, Mean=3.54). This finding is consistent with other recent studies. For example, research in Ibadan showed that sites after demolition quickly become locations for illegal dumping and open burning, causing serious pollution (Adewumi and Sani, 2024). Another study in Kano noted that demolition waste is often bulky and difficult to manage through formal channels, which pushes people toward unsafe, informal disposal (Bala, 2025). Together, this evidence points to demolition as a key, but largely unmanaged, cause of solid waste problems in Nigerian cities, worsening already strained infrastructure.

The community's clear collective recognition of the waste problem does not translate into corresponding individual action. Measures of personal responsibility in waste management, such as using covered containers (Statement 2, Mean=2.69), transporting waste to designated sites (Statement 7, Mean=2.52), and tracking personal waste streams, received notably lower agreement. Furthermore, respondents largely rejected the notion that an effective waste policy is in place (Statement 10, Mean=2.39). This disconnects points not to a simple knowledge-action gap, but to significant structural constraints that limit individual agency. As Chukwu and Ibrahim (2024) observe, in the absence of dependable municipal collection and accessible disposal facilities, households are compelled toward unsustainable practices such as open burning and dumping, irrespective of their environmental awareness. These findings challenge earlier emphasis on awareness-raising as the primary remedy, as suggested by Okoro and Eze (2023). Instead, it aligns with Garba's (2025) assertion that infrastructure and policy failures are the principal determinants of disposal behavior. Thus, while demolition exacerbated the visibility and volume of waste, the prevailing disposal methods signal a deeper, systemic breakdown in urban waste governance. Effective intervention must therefore move beyond public education toward foundational policy and infrastructural reform.

The results from Table 4 depict a pronounced decline in Water, Sanitation, and Hygiene (WASH) conditions, exposing significant infrastructure and socio-economic regression in the aftermath of the demolition. Residents indicated that water and toilet access were barely sufficient even before the event (Statements 1 and 2, Means=2.98 and 2.66), reflecting the ongoing WASH shortages common in urban Nigeria, as noted by Adebayo and Nwafor (2024). The demolition severely intensified these challenges. There was strong consensus that sanitation infrastructure was destroyed (Statement 3, Mean=3.54), water access became more difficult and unsafe (Statements 7 and 8, Mean=3.19), and expenses for water and sanitation rose sharply (Statements 9 and 10, Means=3.43 and 3.20). These observations support findings by Bello and Suleiman (2025), who recorded household spending on WASH services increasing by 300–400% after forced evictions in Abuja, as families turned to more expensive, informal sources after local systems were ruined. This regression directly opposes the aims of Sustainable Development Goal 6, demonstrating how urban redevelopment can undermine access to clean water and sanitation.

In addition to the loss of infrastructure, the data shows considerable secondary social, economic, and psychological effects. Respondents reported that pollution disrupted local businesses (Statement 6, Mean=3.38) and expressed unease due to fears of conflict with demolition officials (Statement 5, Mean=3.05). These responses highlight a broader environment of instability that prolongs the demolition's damage beyond physical loss. This aligns with Ibrahim's (2024) concept of "planning blight," a condition of socio-economic stagnation following demolition threats that hinders the recovery of small businesses. A revealing detail is the community's clear rejection of open defecation (Statement 4, Mean=2.39). This indicates resilience and the pursuit of alternative, though often burdensome, sanitation options, a pattern also found by Okeke and Umar (2025) among displaced groups in Kano. It suggests that, despite the loss of shared facilities, households actively sought to avoid the most unsanitary practices, albeit at considerable personal cost. Consequently, the demolition eroded not only physical structures but also the basic systems of environmental health, setting off a chain of increased hardship, financial pressure, and psychological stress that deepened urban poverty and vulnerability.

CONCLUSION

The findings of this study demonstrate that the demolition of the Jimeta Shopping Complex precipitated a severe environmental and socio-economic decline. The removal of the physical market space deepened vulnerabilities in waste management, water supply, and sanitation, disproportionately impacting the local trading community. The research reveals a key contradiction: while residents collectively recognized the environmental crisis, their individual capacity to adopt proper waste disposal methods was significantly limited. This gap highlights a systemic failure in urban governance, where a lack of reliable municipal services and supportive policy, rather than a deficiency in public awareness, is the primary driver of harmful environmental practices. Therefore, the demolition acted not as a catalyst for urban improvement but as an event that intensified poverty, health risks, and ecological degradation for a vulnerable population.

In response, the study underscores the urgent need for a fundamental shift in urban planning and governance in Nigeria. To avoid reproducing such harmful outcomes, development initiatives must be guided by mandatory and participatory Environmental and Social Impact Assessments that explicitly center community health and livelihood security. This requires moving beyond disruptive, top-down clearance projects toward inclusive renewal models that proactively provide essential infrastructure and economic support. Sustainable urban progress depends on frameworks that recognize and formally integrate the resilience and economic contribution of informal sectors, ensuring that redevelopment promotes equity and environmental justice rather than exacerbating existing urban inequalities.

REFERENCES

1. Adebayo, A. A., & Tukur, A. L. (1999). Climate, sunshine, temperature, evaporation and relative humidity. *Adamawa state in maps*, 20-22.
2. Adebayo, F. O., and Chukwuma, G. C. (2024). Risk mitigation and product diversification strategies among micro-retailers in Onitsha main market. *Nigerian Journal of Business and Entrepreneurship*, 15(2), 34–52.
3. Adebayo, F. O., and Nwafor, C. (2024). Chronic deficits and spatial inequalities in urban water and sanitation access in Nigeria's secondary cities. *Journal of Water, Sanitation and Hygiene for Development*, 14(2), 89–104.
4. Adebawale, O., and Tanko, M. (2024). Informal markets and urban land politics: Displacement and resistance in Nigerian cities. *African Urban Studies Journal*, 11(1), 34–52.
5. Adewumi, A. J., and Sani, L. (2024). Environmental and public health impacts of post-demolition waste management practices in Ibadan, Nigeria. *Nigerian Journal of Environmental Sciences and Technology*, 8(1), 112–127.
6. Adeyemi, T., and Okonkwo, P. (2024). Gender dynamics in community-based participatory research in Southwestern Nigeria. *Journal of Community Health and Social Research*, 12(3), 45–58.
7. Ajayi, P. F. (2024). Post-demolition livelihood strategies and spatial fragmentation: A case study of Jimeta traders. *Nigerian Journal of Social Research*, 15(2), 89–107.

8. Bakare, T., and Yusuf, A. (2023). Regulatory gaps and environmental health hazards at demolition sites in Ibadan and Kaduna. *Journal of Environmental Law and Policy in Nigeria*, 8(1), 67–85.
9. Bala, K. (2025). Characterisation and management challenges of construction and demolition waste in rapidly urbanising cities: A case study of Kano. *African Journal of Urban and Sustainable Development*, 12(2), 45–60.
10. Bala, K., and Umar, H. (2025). Stakeholder profiles and success factors in community-led environmental projects: A case study from the Niger Delta. *Nigerian Journal of Environmental Management*, 8(1), 112–127.
11. Bello, T., and Nwachukwu, S. C. (2025). Beyond goods: The rise of service and digital offerings in Nigeria's informal sector. *West African Journal of Economic Studies*, 22(1), 118–135.
12. Bello, T., and Suleiman, A. (2025). The economic burden of infrastructural loss: Post-eviction WASH expenditures and household vulnerability in the Federal Capital Territory. *Nigerian Journal of Urban and Regional Planning*, 9(1), 112–128.
13. Chukwu, D., and Ibrahim, F. (2024). Infrastructure deficit as a driver of informal waste disposal: A survey of household practices in Port Harcourt. *Journal of Urban Management and Environmental Sustainability*, 6(3), 88–102.
14. Chukwuemeka, E., and Okafor, F. (2023). Comparative analysis of market eviction policies in developing and developed nations. *International Development Planning Review*, 45(3), 301–320.
15. Duncan, C., Kanayo, O., & Djemilou, M. (2019). The Impact of Skills and Training on the Growth and Development of Informal Traders: A Case Study of the Long Street Kiosk in Cape Town.
16. Eze, C. (2023). The political rhetoric of “slum clearance” and urban renewal in contemporary Nigeria. *West Africa Policy Review*, 9(4), 22–41.
17. Eze, C., and Mohammed, A. (2025). Gender-inclusive approaches to sustainable agriculture adoption in Northern Nigeria. *African Journal of Agricultural and Social Sciences*, 11(4), 234–250.
18. Fatima, A., and Sule, B. (2024). Marital status and healthcare utilization patterns in peri-urban communities. *Journal of Public Health in Africa*, 15(2), 78–89.
19. Fatima, A., Sani, L., and Yusuf, B. (2025). Pathways to formality: Aspirations and transitions among informal vendors in Abuja. *Journal of African Urban Economics and Policy*, 8(3), 77–94.
20. Folami, O., and Adekola, P. O. (2023). Applying environmental justice frameworks to urban development conflicts in Lagos. *Justice, Spatiality and the City*, 5(1), 112–130.
21. Garba, J. (2025). Beyond sensitization: Evaluating the role of policy and infrastructure in determining solid waste disposal behaviour in Northern Nigeria. *West African Journal of Public Health*, 11(1), 55–70.
22. Garba, J., and Okafor, N. (2025). Determinants of mobile health application uptake among Nigerian young adults. *Journal of Health Informatics in Developing Countries*, 19(1), 55–70.
23. Gbadeyan, R. A., and Alabi, O. M. (2024). Towards mandatory social impact assessments for urban projects in Nigeria: Policy gaps and recommendations. *Journal of Sustainable Urbanization*, 7(2), 55–73.
24. Ibrahim, D. (2024). Planning blight and micro-enterprise stagnation in informal economies facing redevelopment threats. *African Journal of Economic and Social Studies*, 11(3), 201–218.
25. Ibrahim, D., and Okafor, N. G. (2024). The socio-economics of street vending and spatial contestation in Lagos metropolis. *African Urban Research Review*, 11(4), 201–219.
26. Ibrahim, G., and Sani, M. (2024). The unseen costs: A scoping review of environmental health in urban displacement literature. *Public Health in Africa*, 15(1), 102–118.
27. Mohammed, A. (2024). Vulnerability and adaptive capacity of micro-entrepreneurs in urban redevelopment zones. *Adamawa State University Journal of Social Science*, 12(1), 45–62.
28. Nwankwo, C. (2023). Occupational health hazards among informal sector workers in contaminated urban environments. *Nigerian Medical Journal*, 58(4), 200–215.
29. Okeke, C., and Umar, H. (2025). Coping mechanisms and sanitation resilience among urban displaced communities in Northern Nigeria. *Journal of Public Health in Africa*, 16(1), 55–72.
30. Okeke, F. N., Onyeke, Q., and Adeolu, A. (2024). Construction and demolition waste: Characterization and management challenges in Abuja. *Journal of Waste Management and Environmental Protection*, 10(3), 28–47.
31. Okoro, P. N., and Eze, C. (2023). The efficacy of environmental education in improving waste disposal practices in urban slums. *International Journal of Sustainable Development*, 16(4), 234–250.
32. Scope Newspaper. (2024, August 21). *Jimeta shopping complex demolished in urban renewal drive* (p. 5).
33. Seixas, B. V., Smith, N., & Mitton, C. (2017). The qualitative descriptive approach in international comparative studies: Using online qualitative surveys. *International journal of health policy and management*, 7(9), 778.
34. Sekaran, S., Tkachenko, A., Johnston, C., & Aerts, C. (2021). A comparison of the dynamical and model-derived parameters of the pulsating eclipsing binary KIC 9850387. *Astronomy & Astrophysics*, 648, A91.
35. Tafesse, S., Girma, Y. E., & Dessalegn, E. (2022). Analysis of the socio-economic and environmental impacts of construction waste and management practices. *Helijon*, 8(3).
36. Yaska, M., & Nuhu, B. M. (2024). Assessment of measures of central tendency and dispersion using likert-type scale. *African Journal of Advances in Science and Technology Research*, 16(1), 33-45.

CITATION

Baba, Z. D., Abubakar, A., Umar, H., & Timothy, E. (2026). Assessing the Environmental Impact of the Jimeta Shopping Complex Demolition on Local Traders. In Global Journal of Research in Agriculture & Life Sciences (Vol. 6, Number 1, pp. 1–9). <https://doi.org/10.5281/zenodo.18453504>

Global Journal of Research in Agriculture & Life Sciences Assets of Publishing with Us

- **Immediate, unrestricted online access**
- **Peer Review Process**
- **Author's Retain Copyright**
- **DOI for all articles**