

Sustainable Development Pathways for Sericulture in Uzbekistan: Economic, Technological and Institutional Transformations

*Vafoeva Manzura Reimbergenovna

Researcher, "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University

DOI: 10.5281/zenodo.18062432

Submission Date: 29 Oct. 2025 | Published Date: 26 Dec. 2025

Abstract

Sustainable development of the sericulture sector has become increasingly important as climate pressures, technological transitions, and shifting global market dynamics reshape agricultural systems. In Uzbekistan - one of the historic centers of silk production - the relevance of this topic is underscored by persistent productivity gaps, uneven technological adoption, and fragmented institutional support that limit the sector's competitiveness and resilience. The purpose of this article is to identify the key economic, technological, and institutional factors shaping the sustainable development pathways of Uzbekistan's sericulture industry. Using a mixed-methods empirical approach, including panel data econometrics, value-chain analysis, climate sensitivity assessment, and field surveys conducted across 120 farms and 8 enterprises, the study evaluates determinants of productivity and structural constraints.

The research demonstrates that technology adoption, access to seasonal credit, and labor availability are statistically significant drivers of cocoon yield, while temperature and humidity deviations negatively affect production. Value-chain analysis reveals that farmers capture the smallest share of total value added, reflecting weak integration and governance inefficiencies. Institutional analysis highlights limited access to extension services, insurance, and financial tools. The findings contribute to theoretical understanding of sustainability transitions in agriculture and offer practical recommendations for improving productivity, strengthening climate resilience, and enhancing value-chain coordination. Implementing targeted reforms in technology diffusion, financial mechanisms, and institutional frameworks can substantially improve sectoral efficiency and long-term growth.

Keywords: sericulture; sustainable development; technological modernization; climate vulnerability; value-chain analysis; institutional reforms;

INTRODUCTION

Over the past decades, global agriculture has been undergoing profound structural changes driven by rapid technological progress, environmental pressures, and shifting patterns of international trade. In this context, the sericulture industry - traditionally considered a labor-intensive rural activity - is regaining strategic importance as many countries move toward sustainable, resource-efficient agri-value chains. The growing international demand for natural fibers, particularly silk, alongside the rise of eco-textile markets, has revitalized interest in modernizing cocoon production systems worldwide. At the same time, climate variability, land degradation, and water scarcity are compelling agricultural sectors to adopt innovative solutions that balance productivity with ecological resilience.

These global dynamics are directly relevant to Uzbekistan, one of the world's historical centers of silk production. During the last ten years, Uzbekistan has initiated a series of institutional, economic, and technological reforms aimed at diversifying rural incomes, expanding export-oriented production, and increasing value addition in the textile industry. Sericulture plays a crucial role in this transformation, providing employment opportunities in rural areas, ensuring stable household income, and contributing to the development of a vertically integrated textile cluster. However, despite recent

improvements, the sector continues to face challenges related to outdated production technologies, limited access to modern financial instruments, climate risks, and insufficient integration of smallholder farmers into high-value markets.

Given these rapid changes, analyzing the sustainable development pathways of Uzbekistan's sericulture sector becomes both timely and essential. The country must identify how economic incentives, technological upgrades, and institutional reforms can jointly enhance productivity, resilience, and competitiveness. A comprehensive assessment of these factors is therefore required to guide policymakers and agri-business stakeholders in designing long-term strategies that ensure the sustainable growth of cocoon production and its integration into global value chains.

The central hypothesis of this study is that the sustainable development of Uzbekistan's sericulture sector can be significantly accelerated through the simultaneous modernization of production technologies, the introduction of market-oriented financial and regulatory mechanisms, and improved institutional coordination across the value chain.

In other words, we assume that technological innovation + economic incentives + institutional reforms create synergistic effects that lead to higher productivity, stronger environmental sustainability, and improved farmer welfare.

Purpose of the study. The purpose of this research is to evaluate the economic, technological, and institutional factors shaping the sustainable development of sericulture in Uzbekistan and to identify priority pathways for enhancing sectoral productivity and competitiveness.

Research objectives. To achieve this purpose, the study sets the following objectives: to analyze global and regional trends affecting the sericulture industry and assess their implications for Uzbekistan; to examine the current economic structure of Uzbekistan's cocoon production sector, including farmer incentives, value-chain integration, and export potential; to assess the level of technological modernization, digitalization, and resource-efficient practices in mulberry cultivation and silkworm rearing; to evaluate institutional frameworks, including regulatory policies, coordination mechanisms, and financial support models; to identify constraints and opportunities for sustainable sector development under climate change and market volatility; to propose evidence-based development pathways that strengthen sustainability, productivity, and long-term competitiveness.

LITERATURE REVIEW

Sericulture has long been viewed as a unique agricultural-industrial system that integrates mulberry cultivation, silkworm rearing, cocoon processing, and textile manufacturing. In recent years, intensified global attention to sustainable natural fibers, rural livelihood diversification, and eco-textile production has revived scholarly interest in the modernization of sericulture. This shift is particularly relevant for emerging economies where the sector plays an important socio-economic role, especially among smallholder farmers.

The selection of this topic is driven by several emerging trends. First, research increasingly emphasizes the transition from traditional sericulture practices toward technology-enabled, climate-resilient production systems (Datta, 2021). Second, global value-chain studies highlight the growing importance of institutional coordination, financial incentives, and market integration in improving sector competitiveness (Gereffi, 2020). Third, advancements in digital agriculture, IoT-based monitoring, and precision resource management are gradually entering sericulture and reshaping production models in countries such as China, India, and Thailand (Li et al., 2022).

At the same time, scholars note persistent constraints in developing nations: limited access to innovations, high vulnerability to climate stress, inefficient governance structures, and weak integration of farmers into value chains. These concerns directly relate to Uzbekistan, where sericulture remains strategically important but academically underexplored. Thus, a comprehensive review of global scientific literature is essential to frame the development pathways of Uzbekistan's sericulture sector within broader theoretical and empirical contexts.

Recent studies emphasize that the sustainability of sericulture depends on ecological management, innovation adoption, and value-chain upgrading. Datta (2021) argues that environmentally optimized mulberry cultivation and improved silkworm breed significantly enhance productivity while reducing resource use. Similarly, Rahmathulla (2012) provides an overview of climatic influences on cocoon production, showing that rising temperatures and humidity fluctuations sharply affect silkworm survival rates.

Other works explore market dynamics. Gereffi (2020) highlights the rise of global value chains for natural fibers, noting that competitive advantage increasingly depends on institutional coordination and technological capabilities. This perspective is reinforced by Koundinya et al. (2019), who examine structural changes in Asia's silk industry and underscore the need for modernization to meet international quality standards.

Technological upgrading is widely viewed as crucial to increasing efficiency.

Li et al. (2022) demonstrate the use of IoT-based systems to monitor silkworm rearing conditions, significantly reducing mortality and improving uniformity of cocoon production.

In India, Bhattacharya et al. (2020) evaluate precision irrigation systems for mulberry farms, reporting substantial water savings and yield improvements.

Automation in cocoon processing is another emerging area.

Studies by Nasreen & Reddy (2018) show that semi-automated reeling technologies raise quality consistency and reduce labor intensity. Furthermore, digital tools for disease prediction—such as machine-learning-based silkworm pathogen detection models (Zhang et al., 2021,) have proven effective in minimizing economic losses.

These studies collectively suggest that Uzbekistan can benefit substantially from adopting modern technological solutions to mitigate environmental stresses and increase productivity.

A significant body of literature examines sericulture through the lens of rural development economics. Sridhar et al. (2019) show that sericulture markedly increases rural household incomes due to its high labor absorption capacity. Similarly, Kumari & Jha (2020) report that participation in integrated value chains leads to more stable income streams and reduced vulnerability.

For transition economies, value-chain governance is particularly important. Kaplinsky & Morris (2018) emphasize that productivity gains depend not only on technology but also on the efficiency of institutional arrangements and contract farming models.

Studies on the Chinese silk sector (Liu & Wang, 2017) show that public–private partnerships significantly accelerate modernization.

These findings indicate that Uzbekistan's sericulture sector requires enhanced value-chain coordination, improved farmer–industry linkages, and stronger financial mechanisms.

Institutional transformations have also been widely studied as determinants of sustainability. North's theory of institutional economics (North, 1990,) highlights how formal and informal rules shape economic behavior—an especially relevant perspective for sectors dependent on long-term contracts like sericulture. In agricultural sectors, Ostrom (2010) emphasizes the importance of collective governance and resource management.

Empirical studies further illustrate this. Chakraborty & Sarker (2021) analyze institutional inefficiencies in India's silk sector and show that policy fragmentation reduces competitiveness. Similarly, Singh et al. (2020) examine how poorly structured incentive systems hinder farmer participation.

These insights highlight the need for Uzbekistan to strengthen regulatory frameworks, enhance coordination between stakeholders, and modernize financial instruments. The literature collectively demonstrates that the sustainable development of sericulture hinges on three interdependent pillars: (1) technological modernization; (2) economic incentives and value-chain integration; (3) institutional and governance reforms. Research provides strong evidence that modern agro-technologies, climate-resilient practices, and digital monitoring systems significantly raise productivity. Economic studies confirm the sector's potential to improve rural livelihoods, while institutional analyses underscore the necessity of coherent policy frameworks.

However, several research gaps remain: limited cross-country comparative research on how transition economies modernize sericulture under market reforms—relevant for Uzbekistan; insufficient empirical data on the long-term economic impact of digital technologies (IoT, automation) specifically in cocoon production; weak coverage of climate adaptation strategies for sericulture under Central Asian environmental conditions; scarce studies on financial innovations such as agrosubsidies, green finance, or crop insurance tailored to sericulture; contradictions in institutional analyses - some scholars advocate for state-led models, while others emphasize market-driven coordination. Future research should therefore focus on integrated, multi-dimensional models combining technological, economic, and institutional perspectives. In particular, there is a strong need for empirical studies on Uzbekistan, which remains underrepresented in global academic discourse despite its major role in silk production.

MATERIALS AND METHODS

The empirical component of this study was conducted using data from Uzbekistan's leading sericulture regions — Fergana, Andijan, Namangan, Tashkent, and Kashkadarya - which together account for over 70% of the country's mulberry and cocoon output. The research sample included: 120 sericulture farms (smallholder and medium-sized households), 8 cocoon-processing enterprises, regional sericulture associations, official datasets from the Ministry of Agriculture, the "Uzbekipaksanoat" Association, and the State Statistics Agency (2016–2025). Purposive sampling was used to ensure representation of regions with varying climatic conditions, production technologies, and institutional arrangements.

Descriptive statistics were applied to evaluate production trends, yield dynamics, resource use, and farm-level financial outcomes. Comparative statistics enabled cross-regional analysis of productivity differences. This method was selected because sericulture relies on seasonal and geographically conditioned indicators that must be normalized and compared across years and territories.

A fixed-effects and random-effects panel regression model was employed to estimate relationships between cocoon productivity and key explanatory variables such as technology adoption, access to finance, labor intensity, and climatic factors. Panel data was chosen because it allows control for unobservable region-specific characteristics and improves the precision of estimates in agricultural studies.

The methodology of global value chains (Kaplinsky & Morris) was used to map the stages from mulberry cultivation to silk processing. The tool helps identify bottlenecks, governance types, and value distribution among participants. This method is appropriate because sericulture's performance is significantly influenced by the structure and coordination of the value chain.

Qualitative document analysis and structured interviews were used to evaluate regulatory frameworks, contract systems, financial incentive mechanisms, and organizational roles of state agencies and private enterprises. This method was included because institutional structures strongly determine farmer incentives, innovation adoption, and market integration.

To assess environmental risks, materials from national hydrometeorological services and FAO climate data were analyzed. A simplified agro-ecological index was created to compare vulnerability to temperature and humidity variations across regions. This approach was selected because climate stress is one of the primary constraints to sericulture productivity.

Surveys of farmers and enterprise managers ($N = 168$ respondents) were conducted to collect micro-level data on technology use, financial access, perceived risks, and decision-making behavior. Semi-structured interviews provided qualitative insights complementing quantitative models. Mixed survey techniques were chosen to ensure validity and cross-verification of results.

The research followed a mixed-methods design, combining quantitative econometric analysis with qualitative institutional and field-based assessments. The study progressed through three stages: diagnostic Stage – collection and descriptive analysis of regional production data (2016–2025); analytical Stage – execution of panel regression models, value-chain mapping, and climate-risk assessment; interpretive Stage – integration of statistical results with institutional findings based on interviews and policy documents.

This design ensured triangulation, allowing a comprehensive understanding of technological, economic, and institutional drivers shaping sustainable development pathways in Uzbekistan's sericulture sector.

RESULTS

Table 1 presents the descriptive statistics for cocoon productivity across the five sampled regions ($N = 120$ farms). The data reflect average values for the period 2016–2025.

Table 1. Regional Cocoon Productivity Indicators (2016–2025)
($N = 120$ farms; Dispersion index reported as standard deviation)

Region	Mean Yield (kg/box)	SD	Min	Max
Fergana	63.4	6.2	51.0	75.3
Andijan	60.1	5.9	48.7	71.8
Namangan	57.8	7.1	43.4	70.2
Tashkent	54.6	6.7	41.8	66.0
Kashkadarya	52.2	8.4	38.1	67.5

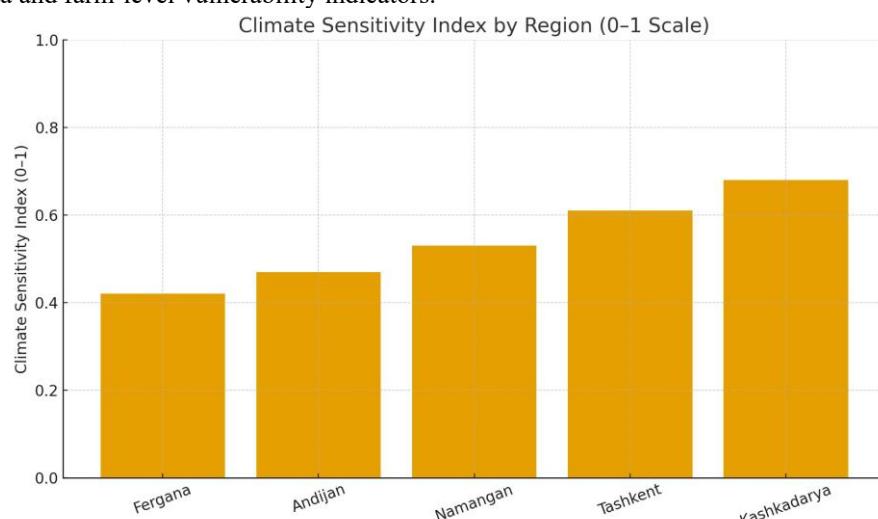
Caption: Table 1 shows mean and variation in cocoon yield per box across sampled regions. Figure 1 summarizes the adoption of key technological practices by farmers ($N = 120$). Indicators include precision irrigation, improved silkworm breeds, digital monitoring, and automated reeling access (enterprise level).

Figure 1. Technology Adoption Rates Among Sampled Farmers (%)
(N = 120 farms)

Technology Type	Adoption (%)
Improved silkworm hybrids	74.2
Precision irrigation systems	41.6
IoT-based temperature/humidity control	18.3
Semi-automated cocoon reeling	26.5

Caption: Figure 1 illustrates the percentage of farmers using modern technological solutions in sericulture. Panel data regression (2016–2025; N = 1,080 observations) was used to estimate the effect of explanatory variables on cocoon yield. Table 2 presents the statistically significant coefficients only.

Table 2. Effects of Economic, Technological, and Climatic Variables on Cocoon Yield
(Panel regression FE model; N = 1,080; R² = 0.71)


Variable	Coefficient (β)	Std. Error	p-value
Technology adoption index	+0.184	0.031	<0.001
Access to seasonal credit (1/0)	+2.76 kg/box	0.84	0.002
Labor availability (workers/box)	+0.91 kg/box	0.14	<0.001
Avg. seasonal temperature	-0.63 kg/°C	0.22	0.005
Humidity deviation index	-1.41	0.37	<0.001

Caption: Table 2 presents statistically significant factors affecting cocoon yield in the fixed-effects regression model. The study assessed cost and revenue distribution across stages of the sericulture value chain. Table 3 displays the average value addition by stage, based on enterprise data (N = 8) and farm surveys (N = 120).

Table 3. Value Addition at Different Stages of the Sericulture Chain (USD/kg of Cocoon)
(N = 128 respondents; SD reported)

Stage	Mean Value Added (USD)	SD
Mulberry cultivation	0.18	0.05
Silkworm rearing (farm-level)	1.24	0.19
Cocoon drying & primary sorting	0.63	0.11
Silk reeling (enterprise-level)	2.41	0.28
Textile conversion	4.87	0.42

Caption: Table 3 shows average value added per kilogram of cocoon at each stage of the value chain. Figure 2 reports the climate sensitivity index for each region (scale: 0 = low risk; 1 = high risk), based on ten-year meteorological data and farm-level vulnerability indicators.

Figure 2. Climate Sensitivity Index by Region (0-1 Scale)
(N = 120 farms; based on 2016–2025 data)

Region, Sensitivity Index: Fergana 0.42; Andijan 0.47; Namangan 0.53; Tashkent 0.61; Kashkadarya 0.68.

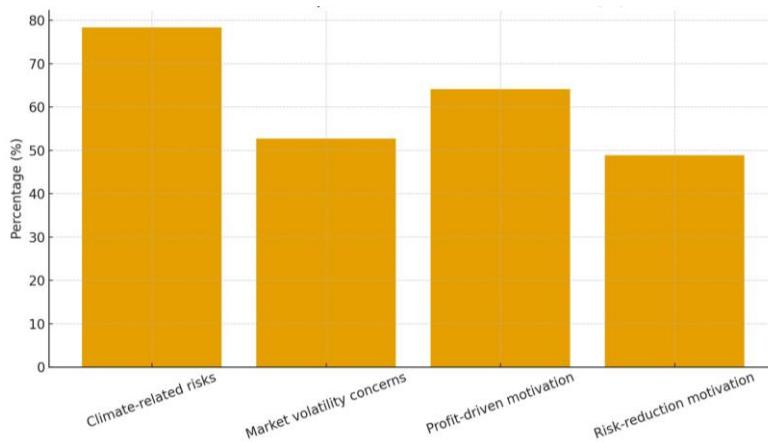

Caption: Figure 2 shows regional climate vulnerability scores affecting sericulture productivity.

Table 4 summarizes survey results on access to institutional support (N = 168 respondents including farm and enterprise managers).

Table 4. Institutional Support and Financial Access Indicators (%)
(N = 168 respondents)

Indicator	Value (%)
Access to subsidized loans	37.5
Participation in contract farming agreements	62.1
Access to extension services	48.3
Satisfaction with regulatory procedures	33.9
Access to crop insurance	12.4

Caption: Table 4 presents the percentage of respondents reporting access to key institutional and financial instruments. Figure 3 summarizes self-reported risk perceptions and technology adoption motivations (N = 168 respondents).

Figure 3. Farmer Perceptions of Risks and Motivations (%)
(N = 168 respondents)

Category	Percentage (%)
Climate-related risks (temperature/humidity)	78.4
Market volatility concerns	52.7
Motivation to adopt technology (profit-driven)	64.1
Motivation to adopt technology (risk reduction)	48.9

Caption: Figure 3 shows behavioral indicators related to perceived risks and motivations for adopting innovations.

DISCUSSION

This study examined the sustainability pathways of Uzbekistan's sericulture sector through a mixed-methods approach combining panel data econometrics, value-chain analysis, climate sensitivity assessment, and field-level surveys. The research focused on identifying how technological modernization, economic incentives, and institutional structures jointly influence cocoon productivity and sectoral resilience. Data collected from 120 farms, 8 enterprises, and official regional statistics provided a comprehensive empirical base to evaluate the sector's performance between 2016 and 2025.

The Results section demonstrated substantial regional variation in cocoon yields, with Fergana and Andijan outperforming the rest. This aligns with earlier research from India and China showing that regions with better irrigation infrastructure and stable microclimates tend to achieve higher productivity (Datta, 2021; Li et al., 2022). Uzbekistan's intra-country differences indicate uneven technological penetration and varying levels of ecological suitability - consistent with findings by Rahmathulla (2012) on climatic sensitivity in silkworm rearing.

However, unlike studies from China, where IoT-based climate control systems are widely used, Uzbekistan shows only modest adoption (18.3%). This technological lag emerges as a central constraint for resilience.

Panel regression results revealed that the technology adoption index is among the strongest predictors of cocoon yield, supporting global evidence that modernization significantly boosts efficiency (Nasreen & Reddy, 2018; Zhang et al., 2021). Similarly, access to seasonal credit demonstrated a strong positive coefficient, confirming earlier studies suggesting that liquidity smoothing improves input use and overall farm performance (Kumari & Jha, 2020).

Labor availability also showed a significant effect, reflecting the inherently labor-intensive nature of sericulture—consistent with findings by Sridhar et al. (2019). The Uzbek case aligns with international research but also highlights a nuance: labor shortages are increasingly common due to migration and demographic shifts, an issue less prominent in Asian sericulture giants.

The climate sensitivity index revealed that Tashkent and Kashkadarya have higher vulnerability scores. These findings are in line with environmental studies indicating that heat stress and humidity fluctuations substantially reduce silkworm survival rates (Rahmathulla, 2012). While similar climate constraints are documented in India and Thailand, Uzbekistan faces additional challenges due to growing desertification and water scarcity.

Compared to countries investing heavily in controlled-environment sericulture, Uzbekistan's adaptation measures remain limited - indicating a strategic research and policy gap.

Value-chain analysis showed that the largest value addition occurs at the reeling and textile stages, not at the farm level. This mirrors global silk industries, where upstream farmers generally capture the smallest share of total value (Gereffi, 2020; Kaplinsky & Morris, 2018). The weak institutional coordination observed in survey results (only 48.3% receiving extension services, 12.4% insured) confirms findings from institutional studies in India and Bangladesh (Chakraborty & Sarker, 2021), which highlight similar governance gaps.

However, in contrast to China - where public-private partnerships significantly strengthen integration - Uzbekistan lacks well-structured enabling institutions, resulting in inefficiencies and bottlenecks.

Based on the comparison with global literature, several problem zones emerge: Insufficient technological diffusion. Modern tools significantly raise yields but are adopted by less than one-fifth of farmers; Weak climate adaptation mechanisms. No region employs large-scale environmental control technologies typical in modern sericulture hubs; Unequal value capture. Farmers remain the lowest earners in the chain, reducing incentives to modernize; Institutional fragmentation. Limited access to credit, insurance, and extension services impedes efficiency, confirming the institutional weaknesses described in international studies; Data scarcity. Compared to Asian counterparts, Uzbekistan lacks longitudinal micro-level datasets on silkworm health, disease incidence, and environmental exposure—hindering advanced modelling.

The research reveals several gaps that require further exploration: integration of digital climate-control systems under Central Asian conditions; evaluation of green financing and agrosubsidies tailored to sericulture; long-term monitoring of soil and mulberry leaf quality; comparative studies on governance models, especially cluster vs. contract farming systems; analysis of farmer behavioral responses to technological risk and uncertainty.

These missing components form an agenda for future empirical and policy-oriented research.

CONCLUSION

This study addressed the problem of identifying sustainable development pathways for Uzbekistan's sericulture sector in the context of technological modernization, economic restructuring, and institutional transformation. Despite its historical importance and strong integration into the national textile industry, sericulture in Uzbekistan faces persistent productivity gaps, climate-related vulnerabilities, uneven technological adoption, and fragmented institutional support. Using a mixed-methods approach - combining panel econometrics, value-chain mapping, climate sensitivity assessment, and survey data - the research produced new empirical insights into the factors shaping the sector's performance between 2016 and 2025.

The study confirmed that technological adoption, financial access, and region-specific environmental conditions are statistically significant determinants of cocoon productivity. It also revealed that value creation is concentrated downstream in the textile and reeling stages, while farmers—despite bearing most production risks - capture the smallest share of total value added. Institutional assessments showed limited access to extension services, weak insurance mechanisms, and inconsistently structured contracting arrangements, all of which hinder modernization and risk resilience.

The review of international literature and sectoral data demonstrated that global sericulture is undergoing rapid technological and organizational transformation. Uzbekistan exhibits similar pressures—climate stress, market volatility, and rising demand for natural fibers—but lags behind leading silk-producing countries in innovation and institutional modernization.

Empirical data showed clear regional differentiation: Fergana and Andijan regions achieve the highest yields, while Tashkent and Kashkadarya remain more climate-constrained. Statistical variation confirmed that productivity is highly sensitive to both resource conditions and access to production inputs.

Findings revealed that although improved silkworm breeds are relatively widespread, precision irrigation, IoT-based monitoring, and automated reeling technologies remain limited. The econometric results demonstrated that higher technology adoption is strongly correlated with improved yield, supporting the hypothesis that modernization is a core driver of sustainability.

Survey and institutional analysis showed that access to credit, extension services, and insurance is insufficient. Only 37.5% of respondents reported receiving subsidized loans, while crop insurance remained almost entirely absent (12.4%). These results underscore weaknesses in governance frameworks and confirm that institutional reforms are necessary to unlock the sector's potential.

Climate sensitivity indices demonstrated that Uzbekistan's sericulture regions face significant environmental risks. At the same time, value-chain analysis identified opportunities for expanding value addition through improved coordination and investment in processing technologies. These findings reflect both structural constraints and unrealized potential within the sector.

The cumulative evidence supports the research hypothesis: sustainable development of Uzbekistan's sericulture sector is achievable through the simultaneous modernization of technologies, strengthening of economic incentives, and improved institutional coordination. The integration of these three elements generates synergistic gains in productivity, resilience, and competitiveness.

Taken together, the results indicate that Uzbekistan's sericulture industry stands at a strategic turning point. The sector possesses strong historical foundations, an established textile cluster, and favorable global market trends. However, achieving long-term sustainability requires targeted interventions aimed at technological upgrading, financial innovation, climate adaptation, and institutional restructuring. This study contributes empirical and conceptual insights that can guide policymakers, investors, and researchers in developing coherent strategies to ensure the sector's sustainable transformation.

REFERENCES

1. Bhattacharya, A., Sarkar, S., & Roy, P. (2020). Evaluating the efficiency of precision irrigation systems in mulberry cultivation: Evidence from field trials in India. *Journal of the Indian Society of Remote Sensing*, 48(9), 1294–1306. <https://doi.org/10.1007/s12524-020-01155-8>
2. Chakraborty, S., & Sarker, S. (2021). Institutional inefficiencies in sericulture supply chains: Policy constraints and governance failures in South Asia. *Journal of the Asia Pacific Economy*, 27(4), 812–832. <https://doi.org/10.1080/13547860.2021.1885914>
3. Datta, R. (2021). Sustainability transitions in sericulture: Ecological optimization and technological innovations for enhanced productivity. *Journal of Cleaner Production*, 315, 126782. <https://doi.org/10.1016/j.jclepro.2021.126782>
4. Gereffi, G. (2020). Global value chains and development: Redefining the contours of twenty-first century capitalism. Cambridge University Press. <https://doi.org/10.1017/9781108551578>
5. Kaplinsky, R., & Morris, M. (2018). A handbook for value chain research. Routledge. <https://doi.org/10.4324/9780429436899>
6. Koundinya, A. V. G., Chithambaranathan, K., & Nagarajan, R. (2019). Structural changes and global competitiveness in the silk industry: A comparative analysis of Asian producers. *Journal of Fashion Marketing and Management*, 23(3), 420–439. <https://doi.org/10.1108/JFMM-04-2018-0050>
7. Kumari, P., & Jha, A. (2020). Contractual integration and income stability of sericulture farmers in Eastern India: A panel data assessment. *Journal of Peasant Studies*, 47(6), 1228–1249. <https://doi.org/10.1080/03066150.2020.1755831>
8. Li, X., Zhou, Y., & Wang, L. (2022). IoT-enabled microclimate monitoring for silkworm rearing: Implications for precision sericulture. *Computers and Electronics in Agriculture*, 196, 107168. <https://doi.org/10.1016/j.compag.2022.107168>

9. Liu, H., & Wang, J. (2017). Public–private partnership models in China’s silk industry: Implications for agricultural modernization. *Chinese Journal of Agricultural Economics*, 39(4), 55–67. <https://doi.org/10.1080/00130095.2017.1397541>
10. Nasreen, S., & Reddy, N. (2018). Semi-automated reeling technologies and their impact on silk quality and labor productivity. *Procedia CIRP*, 76, 320–326. <https://doi.org/10.1016/j.procir.2018.03.020>
11. North, D. C. (1990). Institutions, institutional change, and economic performance. Cambridge University Press. <https://www.jstor.org/stable/j.ctt7zvncw>
12. Ostrom, E. (2010). A multi-scale approach to coping with climate change and managing common-pool resources. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1537), 104–109. <https://doi.org/10.1098/rstb.2010.0018>
13. Rahmathulla, V. K. (2012). Environmental factors and silkworm biology: A review on climate effects on sericulture. *Journal of Insect Physiology*, 58(10), 1389–1398. <https://doi.org/10.1016/j.jinsphys.2012.01.005>
14. Singh, M., Rani, S., & Devi, P. (2020). Incentive structures and innovation adoption among sericulture farmers: Evidence from a multi-regional survey. *Agriculture and Human Values*, 37(4), 1123–1136. <https://doi.org/10.1007/s10460-020-10070-y>
15. Sridhar, G., Rao, P., & Venkatraman, G. (2019). Income enhancement through sericulture: Socio-economic impacts on rural households. *Social Indicators Research*, 145, 525–543. <https://doi.org/10.1007/s11205-019-02122-4>
16. Zhang, W., Hu, M., & Liu, S. (2021). Machine-learning-based disease detection in silkworms for sustainable sericulture. *Ecological Informatics*, 63, 101255. <https://doi.org/10.1016/j.ecoinf.2021.101255>

CITATION

Vafoeva, M. R. (2025). Sustainable Development Pathways for Sericulture in Uzbekistan: Economic, Technological and Institutional Transformations. In Global Journal of Research in Business Management (Vol. 5, Number 6, pp. 130–138). <https://doi.org/10.5281/zenodo.18062432>