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1. INTRODUCTION 
Ordinary Differential Equations (ODEs) are commonly used in mathematically formulated models designed to describe 

physical phenomena across science and engineering disciplines. They play a crucial role and find wide-ranging 

applications, not only in the physical sciences but also in various other areas such as medical sciences, thermodynamics, 

chemical engineering, control theory, operations research, and behavioural sciences. 
 

Let us examine the general third-order ordinary differential equations (ODEs) expressed using a sixth-order power series 

of the form: 

 

( ) j
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                                                                                                                      (1) 

 

Which is recommend as general third order derivative solution of initial value problems of the form 

 

( ) ( ) ( ) ( ) ( ) ''0'','0',,'',',,''' 000 yyyyyxyyyyxfxy ====                                                 (2) 

 

The resolution of (1) has been explored by numerous scholars, such as: Abdulazeez, Kayode Jimoh [1] proposed two-

step hybrid block method for the numerical solution third order differential equations. He adopted the used of 

approximate power series as an interpolation equation and its derivatives as a collocation equation that is used in the 

development of the method. Ishaq et al. [2] introduced a novel three-step block method designed to directly tackle third-

order initial value problems through the method of collocation. Their method was zero-stable, convergent and the region 

of stability is absolutely stable.  Dalatu et al. [3] developed a hybrid block method for solving third-order derivative with 

initial value problems of ordinary differential equations. Their method was derived by collocating and interpolating the 

approximate solution using power series. Abdelrahim and Omar [4] developed one-step blocks method for the direct 

solution of third-order initial value problems of ordinary differential equations using the power series as the basis 

function. Their method was developed to solve third-order initial value problems. Atabo et al. [5] developed a selected 
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single step hybrid block formula for solving third-order ordinary differential equations with application in thin film flow. 

Their method has advantage of selecting only odd off-grid points within a single-step interval and collocated at all points. 

Modebei et al. [6] proposed a three-step fourth derivatives method for numerical integration of third order ordinary 

differential equations. They used a three-step hybrid block method with three mid-step grid points based on linear 

multistep method to presented in their work for direct approximation of solution of third-order initial and boundary value 

problems. Muhammed and Adeniyi [7] developed three-step implicit hybrid linear method for solution of third-order 

ordinary differential equations. Adeyeye and Omar [8] developed third-order ordinary differential equations using one-

step block method with four equidistant generalized hybrid points. The equation for the generalized linear block method 

takes a similar form as the conventional linear multistep method, however the form produces the needed family of 

scheme required simultaneously evaluate the solution of the third-order ordinary differential equations at individual grid 

points in a self-starting mode. Joshua, S. [9] a hybrid block technique with two-step optimization for handling general 

third order ordinary differential equations. 
 

2. Derivation of the Method 
The derivation of the one-step third derivative method is based on a finite power series function expressed as: 
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Which is propose as general third order derivative solution of initial value problems of the form 
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Where i and c denote points of interpolation and collocation respectively, so that the third derivative is 
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we obtained a system of nonlinear 

equations of the form 
 

                                                          UAX =                                                                          (4) 
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Whose unknowns sb' are solved for using Gaussian elimination technique and results are substituted in to equation (1) 

to give a continuous linear multistep method of the form 
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The expression for the s'  then written in terms of the parameters sj ' and sj ' as the following functions of t. 
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,0=t . The values obtained are then substituted in to (5) to 

obtain the implicit hybrid block method as follows  
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Differentiating (5) once, we have 
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The derivatives of the parameters sj ' and sj ' are written as the following function of t. 
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The derivatives ss jj ','  at 1,
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following implicit hybrid block scheme 
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Differentiating (5) twice, we have 
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The second derivatives of the parameter ss jj ','  are written as the following functions of t. 
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,0=t  the values obtained are then substituted in to (16) to obtain the 

following implicit hybrid block scheme. 
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Equations (6) - (8), equations (10) - (14) and equations (16) - (22) are then put in matrix form to produce: 
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The block matrices in equation (24) is then resolved by multiplying by 
1−S to gives the following discrete scheme 
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2.1 Analysis of the Method 
In this paper, the main properties of the one-step four-point hybrid block method for solving third order initial value 

problems are presented. The properties include the order and error constant, zero stability, linear stability, stability 

polynomial, consistency and convergence of the method. 

Consider the linear operator L associated with the implicit hybrid block method (25) – (39) defined as 
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            ( )  ( ) ( )  +−+=
j
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Where ( )nxy  is an arbitrary test function that is continuous and differentiable in the interval [a, b]. Obtaining the Taylor 

series expansions of ( )jhxy n +  and ( )jhxy n +'''  about nx and collecting the coefficient of 
ph gives; 

( )  ( ) ( ) ( ) ( ) ( ) ...........''': 2

210 +++++= n
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pnnnn xyhcxyhcxhycxychxyL    (41) 

Where sc j '  for j = 0, 1, 2, 3…. 

 

2.2 Orders and Error Constants 

From (35), if it is obtained that: 

             0,0... 32210 ===== ++ pp ccccc  

Then the hybrid block method (25) – (39) is of order 6 and the error constants are 

 
 

2.3 Zero Stability of the Block Method 
The new block method is zero stable if the first characteristic polynomial   
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and satisfies the equation, ,1jw the multiplicity must not exceed the order of differential equation. Omole and 

Ukpebor, [10]. 
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w , the method is zero-stable 

2.4 Linear Stability 
The linear stability of the method is given by: 
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Where, 

 

 
 

 

The eigenvalues of the block method is 

 

 
 

2.5 Stability Polynomial 
The stability polynomial of a linear multi-step the method is given by: 
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The region of absolute stability of the method is plotted and shown in figure1. 

 

 
Figure1. The region of absolute stability of the method 

 

2.6 Consistency of the Method 
The linear multistep method is said to be consistent if it has order 1p , [11]. The derived hybrid method is consistent 

since the order is 6 greater than one. 
 

2.7 Convergence of the method 
The method is said to be convergent if and only if it is consistent and zero stable, [11]. Since the proposed method 

satisfies the two conditions, then the method converges 
 

2.8 Numerical implementation of the scheme 
We shall evaluate the performance of the block method on some problems which appear in literature and compare the 

results with our methods. The numerical results are obtained using Maple software. 
 

Example1. Consider the initial value problem below 

         ( ) ( ) ( ) 01.0,10'',00',10,0'''''' =−====−+− hyyyyyyy  

The Exact solution is ( ) xxy cos=  

New method is compared in terms of absolute error in first block method with S=52 of order 6 and error in second block 

method with S=94 in Kuboye et al, [12]. 
 

Example2. Consider a highly stiff problem  
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Table 01. Showing the comparison of absolute error in our method with kuboye et al, [12] for 

example one 
X Exact solution Computed solution Error in our 

method 

Error in kuboye 

S=52 [11] 

Error in kuboye 

S=94 [12] 

0.01 0.9999500004166652777 0.9999500004166652777 0.0000000 1.1102230e-16 1.000000e+00 

0.02 0.99980000666657777841 0.99980000666657777842 1.0000e-20 5.5511151e-16 5.5511151e-16 

0.03 0.99955003374898751627 0.99955003374898751628 1.0000e-20 8.6597396e-15 8.7707619e-15 

0.04 0.99920010666097794031 0.99920010666097794033 2.0000e-20 6.4837025e-14 6.4614980e-14 

0.05 0.99875026039496624656 0.99875026039496624657 1.0000e-20 2.6301183e-14 2.6290081e-14 

 

Table 02. Showing the comparison of absolute error in our method with Tumba et al. [13] for 

problem two 

x Exact solution Computed solution Error in our method Error in Tumba et al. [13]. 

0.1 0.99532115983955553048 0.99532115983955550649 2.399e-17 1.0434e-14 

0.2 0.98247690369357823040 0.98247690369357907217 8.4177e-16 9.8731e-14 

0.3 0.96306368688623322589 0.96306368688623690353 3.67764e-15 3.1317e-13 
0.4 0.93844806444989502104 0.93844806444990388985 8.86881e-15 6.6668e-13 
0.5 0.90979598956895013540 0.90979598956896650456 1.636916e-14 1.1507e-12 
0.6 0.87809861775044229221 0.87809861775046817516 2.588295e-14 1.7445e-12 
0.7 0.84419501644539617499 0.84419501644543316253 3.698754e-14 2.4220e-12 
0.8 0.80879213541099886457 0.80879213541104807872 4.921415e-14 3.1554e-12 
0.9 0.77248235350713831257 0.77248235350720041186 6.209929e-14 3.9178e-12 
1.0 0.73575888234288464320 0.73575888234295985875 7.521555e-14 4.6852e-12 

 

2.9 Conclusion 
In this paper, one-step block method with four hybrid points for the numerical solution of third order initial value 

problems is derived and implemented. The method was derived through interpolation of the assumed power series 

solution and four off-grid points. The third derivative of the assumed solution was collocated at all points in the interval 

of consideration. The properties of the method including order and error constant, consistency, zero stability, Linear 

Stability, Stability Polynomial and convergence were discussed. Numerical results were presented in Table 01- 02, shows 

that table 01 has been compare with Kuboye et al, [12] of the same order with improved performance in our method. 

Table 02 has been compared with Tumba et al. [13] of the same order with improved performance in our method. 
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