

Timing of Prosthetic Loading in Dental Implantology: An Evidence-Based Review of Immediate and Delayed Protocols

*Dr. Shubhangi Lokhande ¹, Dr. Ruchira Gaikwad ², Dr. Prabhakar Angadi ³, Dr. Krishna Mundhada ⁴

^{1,2,4} Postgraduate Student, Department of Prosthodontics, SMBT Dental College, Ghulewadi, Sangamner

³ Professor & Head of Department, Department of Prosthodontics, SMBT Dental College, Ghulewadi, Sangamner

DOI: [10.5281/zenodo.17402847](https://doi.org/10.5281/zenodo.17402847)

Submission Date: 30 Aug. 2025 | Published Date: 21 Oct. 2025

*Corresponding author: Dr. Shubhangi Lokhande

Postgraduate Student, Department of Prosthodontics, SMBT Dental College, Ghulewadi, Sangamner

Abstract

This review consolidates contemporary evidence from systematic reviews, clinical trials, and comparative studies on immediate versus delayed loading of dental implants. Drawing from peer-reviewed sources, it explores the biological foundations, clinical success rates, patient-centered outcomes, and guidelines for case selection. The evidence suggests that with appropriate case selection, immediate loading can achieve outcomes comparable to delayed loading, offering benefits in terms of reduced treatment time and enhanced patient experience. Delayed loading, though requiring more time, generally offers higher success rates and is more predictable in challenging clinical situations. While both immediate and delayed loading approaches yield high survival rates when conditions are optimal, individualized treatment planning remains essential. This review serves as a practical guide for clinicians navigating the nuances of implant loading protocols.

Keywords: Dental implants, immediate loading, delayed loading, protocols.

Introduction

The rehabilitation of edentulism has long been regarded as one of the main challenges for dentists. Dental implants have become the standard of care for replacing missing teeth due to their long-term durability, functionality, and aesthetic outcomes. For decades, the choice of rehabilitation of complete edentulous patients has been complete dentures but owing to difficulties in achieving retention, stability, and support in a severely resorbed mandible, implant-supported overdentures have become the mainstay of treatment in such patients. Dental implant is a prosthetic device made of alloplastic material(s) implanted into the oral tissues beneath the mucosal and/or periosteal layer and on or within the bone to provide retention and support for a fixed or removable dental prosthesis (GPT 10).

The original surgical protocol established by Branemark consisted of submerging an implant post placement and maintaining a nonloaded implant environment for 4 to 6 months. During this healing period, fully or partially edentulous patients had to avoid the use of dentures for 2 weeks post surgery and spent prolonged time with a removable partial denture or complete denture. The patient's desire to shorten the treatment period and to avoid an edentulous condition encouraged the introduction of an immediate loading (IL) protocol.

Ledermann was the first to document successful healing after IL of implants placed in the anterior part of the mandible and splinted together with a bar to support the overdenture. However, Schnitman et al were the first to discuss the possibility of using a fixed partial prosthesis to immediately load implants without compromising long-term implant survival. Exact indications and considerations for an IL protocol were defined for the first time in 2002 at the World Congress Consensus Meeting in Barcelona. According to this Meeting, immediate (functional or occlusal) loading is defined in the treatment protocol, that is, when implants have been placed in the bone and have been restored with the use of restorations with occlusal contacts within 3–4 days after surgery. Immediate occlusal loading of full-arch mandibular fixed prostheses and overdentures supported by implants was accepted as a therapeutic option; this was supported by

adequate clinical documentation. At this Conference, further research was presented regarding different treatment areas and different bone qualities. Unfortunately, very few comparative studies have been conducted. However, although IL of single-tooth implants and fixed partial prostheses in the esthetic zone were accepted treatment options, it was suggested that further research was needed to document long-term success. Moreover, the concept of immediate implant loading in other areas of the oral cavity, with poor bone quality, still required documentation.

Cochran et al in a more recent Consensus Conference reviewed the requirements for clinical procedures using IL protocols. One important consideration for the success of immediately loaded implants was adequate initial implant stability. Stability of the implant was found to be influenced by various factors, including implant geometry and length, surface morphology, splinting of implants, control of the occlusal load, quality of bone, and absence of detrimental patient habits. At the microscopic level, bone response is clearly of paramount importance in the determination of clinical success.

Only 4 studies in the literature have evaluated the effects of immediate vs delayed loading on bone-to-implant contact percent ages and bone density in areas of poor bone quality, presenting better osseointegration with denser bone around immediately loaded implants or successful clinical results when the immediate loading concept was used in areas with poor bone quality.

Chiapasco and, more recently, Del Fabbro et al cited the necessity for additional well-designed randomized controlled clinical trials. Additional histologic data supporting the success of IL under various clinical conditions are necessary to support more widespread use of this concept in different clinical situations. In addition, the authors of both studies were unable to compare treatment outcomes between immediately vs conventionally loaded implants because of the paucity of controlled studies comparing these 2 protocols.

Therefore, this review analyzes current evidence on both approaches, synthesizing biological, clinical, and patient-centered perspectives.

Terminologies And Loading Protocols

Conventional (Delayed) Loading

The prosthetic restoration and functional loading of an osseointegrated implant following a three to six month healing period is known as conventional loading. Implants that are placed according to the standard loading technique are frequently, but not always, followed by the closure of the surgical site, necessitating a second procedure to "uncover" the implant. This is referred to as delayed loading at times.

Immediate Loading

Immediate implant loading is at the other extreme. Restoring the implant in occlusal contact within 48 hours following implant placement is known as immediate loading. At its most extreme, the instantly loaded implant may be positioned and permanently repaired in less than 48 hours. The time between implant implantation and repair has been decreased owing to immediate loading. The patient will benefit from shorter treatment duration overall, fewer clinic visits, comfort throughout the healing phase, and enhanced phonetic and aesthetic features.

Early Loading

The concept of early loading is the prosthetic loading of an implant at any instance between conventional and immediate loading.

Immediate Restoration

Immediate loading is similar to immediate restoration or immediate provisionalization. The implant is restored in 48 hours, although in this instance, there is no functional occlusion. It ought to make clear that immediate loading and immediate restoration are not dependent on the immediate implant placement. When treating patients who are partially or completely edentulous, implant placement and loading regimens should be taken into consideration separately, even though they are frequently discussed together and undoubtedly related.

Loading Protocols

- Branemark's loading protocol: Flush with bone level, covered with gingiva. Final prosthesis after 3 to 6 months of initial healing. Soft/ hard diet
- Progressive loading: Flush with bone level, covered with gingiva. Provisional prosthesis brought progressively into occlusion, depending upon bone density. Soft/ hard diet
- Non submerged single stage protocol: Non-submerged implants, flush within 1-2 mm of gingival level. Soft diet
- Immediate functional loading: Temporary restoration fitted on the same day as surgery, in occlusion. Soft diet.
- Immediate non-functional loading: Temporary restoration fitted on the same day as surgery, not in occlusion. Soft diet

- Early loading: Final crowns within 3 weeks from surgery, in occlusion. Soft/ hard diet
- Delayed loading: Implant subjected to loading after more than 6 weeks post surgery. Soft/ hard diet
- Anticipated loading: Provisional prosthesis is fitted after about 2 months after surgery. Soft/ hard diet

Biological Considerations

The biological foundation of implant success hinges on osseointegration. Osseointegration is the apparent direct attachment or connection of osseous tissue to an inert, alloplastic material without intervening fibrous connective tissue. This process is influenced by several interrelated factors:

Osseointegration and Micromotion: Immediate loading introduces functional forces to the implant site very early in the healing process. If the implant lacks sufficient primary stability, micromotion at the bone–implant interface can exceed the critical threshold (50–150 μm), disrupting the formation of stable bone–implant contact and favoring fibrous tissue encapsulation (Eini et al., 2021). In contrast, delayed loading minimizes these early micromechanical disturbances, allowing for uninterrupted bone remodeling and maturation.

Primary and Secondary Stability: Primary stability refers to the mechanical engagement of the implant with the bone at the time of placement. It is influenced by bone density, implant design, and surgical technique. High primary stability (typically torque values >30 –45 Ncm or ISQ >60) is a prerequisite for immediate loading. Secondary stability, on the other hand, develops over time as a result of bone remodeling and regeneration around the implant. Immediate loading must bridge the transition between primary and secondary stability without jeopardizing osseointegration. A drop in total stability during this transition phase commonly known as the stability dip can risk early implant failure if not properly managed.

Wound Healing Phases: After implant placement, the surrounding tissues undergo a cascade of healing events, including clot formation, angiogenesis, cellular proliferation, and bone deposition. In immediate loading, these biological phases overlap with mechanical loading, potentially altering the early healing trajectory. Delayed loading preserves the biologic space for natural healing before prosthetic function is applied (Tealdo et al., 2014).

Bone Quality and Density: The anatomical location of the implant significantly influences loading outcomes. Dense bone (e.g., anterior mandible) is more capable of withstanding early loading due to its higher resistance to deformation and capacity to support primary implant stability. Conversely, regions with low bone density (e.g., posterior maxilla) present a higher risk for early implant movement and failure under immediate loading protocols (Banerjee et al., 2024).

Implant Design and Surface Characteristics: Modern implants are engineered with macro- and micro-features that enhance bone contact. Roughened surfaces and tapered designs have shown to promote faster bone integration, making them more suitable for immediate loading when stability is achieved at placement (Gallucci et al., 2018).

Host Factors and Systemic Health: Patient-related factors such as smoking, diabetes, osteoporosis, or compromised immune function can impair the healing response. In such conditions, delayed loading is generally preferred to avoid early implant loss due to poor osseointegration (Romanos et al., 2009).

Biological Width and Soft Tissue Healing: The peri-implant mucosa requires time to reestablish a stable biological width. Immediate loading may disrupt the epithelial and connective tissue adaptation, leading to soft tissue recession or compromised aesthetics. Controlled delayed loading supports better soft tissue integration, especially in esthetically sensitive regions (Slagter et al., 2021).

Together, these biological variables illustrate the need for careful case selection and preoperative planning. While immediate loading can be biologically compatible under optimal conditions, any deviation in surgical protocol, host response, or implant stability may lead to compromised outcomes.

Clinical Outcomes

Immediate and delayed loading protocols both demonstrate high clinical success when applied to appropriately selected cases. Survival rates consistently exceed 95% across both strategies, and marginal bone loss remains minimal and clinically acceptable. While immediate loading may carry a slightly elevated risk of complications such as implant failure or mobility especially in cases with low primary stability—studies indicate that with proper case planning, outcomes closely resemble those of delayed loading. This makes immediate loading a viable and efficient treatment option under optimal conditions.

Patient Centered Outcomes

Due to its shorter treatment duration, instantaneous aesthetic results, and fewer sessions, immediate loading has been demonstrated to improve patient satisfaction. The longer waiting time associated with delayed loading, on the other hand, may lead to temporary prosthetics that lack aesthetic appeal comparable to the final implant.

Patients are frequently satisfied when they obtain a working prosthesis shortly after implant placement, therefore immediate loading may also have a positive psychological effect. This can enhance the patient's self-esteem and quality of life while undergoing therapy.

Advantages and challenges

Aspect	Immediate Loading	Delayed Loading
Advantages	Faster rehabilitation Enhanced esthetics Fewer appointments	Higher predictability in complex/compromised cases Allows full osseointegration before load
Challenges	Requires high primary stability Increased technique sensitivity Limited indications in poor bone or systemic conditions	Prolonged treatment timeline Temporary aesthetics may not meet expectations

Case Selection and Ideal Conditions for Immediate and Delayed Loading

Below is a clinical decision table for selecting appropriate cases:

Criterion	Ideal for Immediate Loading	Consider Delayed Loading
Primary Stability	Torque >30–45 Ncm or ISQ >60	Low insertion torque or low ISQ
Bone Quality/Volume	Type I–III dense bone, adequate ridge width	Type IV bone, limited volume or height
Implant Design	Tapered, rough-surfaced, platform-switching designs	Standard cylindrical or smooth-surfaced implants
Implant Location	Anterior mandible or maxilla, esthetic zones	Posterior maxilla or compromised ridge
Patient Health	Healthy, non-smoker, no systemic compromise	Uncontrolled diabetes, history of radiation therapy, smoking
Prosthetic Design	Non-functional or provisional restoration with no occlusion	Complex prosthetics or full occlusion loading required

Clinicians can use this chart as a reference to determine when it is safe to use a delayed approach and when immediate loading is practical. For best results, proper clinical planning, patient education, and risk assessment are crucial.

Comparative Review of Evidence

Both immediate and delayed loading techniques are viable under certain clinical circumstances, according to the availability of evidence obtained from systematic reviews and randomized controlled trials:

Survival and success rates: According to a number of studies (e.g., Menini et al., 2019; Patel et al., 2023; Liu et al., 2021). The survival and success rates of immediate loading are equivalent to those of delayed loading, usually surpassing 95%. When appropriate case selection is used, the differences in results are not statistically significant.

Loading Protocols and Timing: Implant failure rates, bone loss, and prosthetic problems were not significantly different between immediate, early, and delayed loading, according to comparative studies (e.g., Chen et al., 2019; Mitsias et al., 2018). When implants were positioned with adequate torque and utilized with interim restorations that were not functional, immediate loading was especially effective.

Prosthesis Type and Arch Location: When appropriate procedures were followed, immediate loading of overdentures in the mandible (Ye et al., 2022) and full-arch prostheses in the maxilla (Menini et al., 2019) demonstrated high long-term success. Superior esthetic and bone outcomes were further supported by anterior esthetic zones, as demonstrated by Slagter et al. (2021) and Puisys et al. (2022).

Bone and Soft Tissue Stability: According to reviews, the two procedures' marginal bone loss is similar and negligible. By reducing surgical trauma, immediate placement combined with early or immediate provisionalization may even lessen bone loss (Slagter et al., 2014; Puisys et al., 2022).

Patient-Centered Results: According to studies, immediate loading provides both psychological and functional benefits. Patients report greater satisfaction and a better quality of life, particularly in anterior region (Kumar et al., 2018).

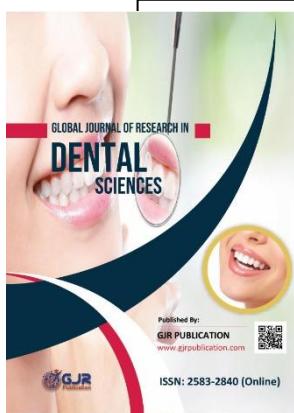
Limitations: Immediate loading necessitates thorough protocol compliance and is not recommended for individuals with systemic disease, low bone quality, or insufficient primary stability. The likelihood of early failure may rise with improper use.

Overall, research indicates that, in appropriate clinical situations, immediate loading may be just as dependable as delayed loading. With careful planning, the use of contemporary implant designs, and clinical experience, predictability rises.

Conclusion

The choice between immediate and delayed loading of dental implants largely depends on clinical factors such as implant stability, bone quality, patient preference, and the specific case. While immediate loading offers several advantages, including reduced treatment time and improved patient satisfaction, it also comes with risks, particularly when adequate implant stability is not achieved. Delayed loading, though requiring more time, generally offers higher success rates and is more predictable in challenging clinical situations.

Both approaches can lead to successful outcomes when applied to the right clinical scenario. Advances in implant technology, surgical techniques, and patient management strategies continue to enhance the ability to predictably use immediate loading in appropriate cases.


The purpose of this review is to enable dental practitioners understand the important factors to take consideration when deciding between immediate and delayed loading. In ultimately, obtaining the greatest results requires cautious patient selection, meticulous preoperative preparation, and rigorous postoperative monitoring.

References

1. GPT-10. (n.d.). *Glossary of Prosthodontic Terms*. *Journal of Prosthetic Dentistry*.
2. Slagter, K. W., Meijer, H. J. A., Bakker, N. A., Vissink, A., & Raghoebar, G. M. (2014). Immediate placement of dental implants in the aesthetic zone: A systematic review and pooled analysis. *Journal of Periodontology*, 85(7), e241–e250. <https://doi.org/10.1902/jop.2014.130659>
3. Banerjee, P., Singh, M., & Tiwari, A. (2024). Osseointegration in poor bone quality: Clinical outcomes and challenges. *International Journal of Oral & Maxillofacial Implants*, 39(1), 25–32.
4. Gallucci, G. O., Benic, G. I., & Jung, R. E. (2018). Consensus statements and clinical recommendations for implant loading protocols. *International Journal of Oral & Maxillofacial Implants*, 33(Suppl.), 167–170.
5. Romanos, G. E., & Nentwig, G. H. (2009). Immediate versus delayed loading of single-tooth implants in the posterior mandible: A 5-year prospective study. *Clinical Implant Dentistry and Related Research*, 11(2), 142–149.
6. Tealdo, T., Bevilacqua, M., Pera, F., Menini, M., Mossolov, A., Drago, C., et al. (2014). Immediate versus early loading of dental implants in the posterior mandible: A 5-year prospective study. *International Journal of Prosthodontics*, 27(3), 263–269.
7. Eini, R., Farhad, S. Z., & Tavakoli, M. A. (2021). Micromotion thresholds in immediate loading of dental implants: A systematic review. *Clinical Implant Dentistry and Related Research*, 23(6), 811–819.
8. Kumar, V. V., Sequeira, P. S., & Kumar, A. (2018). Patient satisfaction and quality of life following immediate and delayed loading of implant-supported prostheses: A randomized controlled clinical trial. *Journal of Prosthetic Dentistry*, 120(6), 930–936.
9. Puisys, A., Auzbikaviciute, V., Vindasiute-Narbute, I., Stumbras, A., & Linkevicius, T. (2022). Soft tissue stability around immediately vs. conventionally loaded implants in the esthetic zone: A 3-year randomized trial. *Clinical Oral Implants Research*, 33(2), 145–153.
10. Ye, M., Liu, W., Cheng, S., & Yan, L. (2022). Immediate vs conventional loading of mandibular overdentures: A systematic review. *Journal of Oral Implantology*, 48(1), 35–42.
11. Menini, M., Pera, F., Bevilacqua, M., Pesce, P., & Tealdo, T. (2019). Long-term results of full-arch immediate loading implant restorations: 10-year follow-up. *Clinical Oral Implants Research*, 30(7), 691–701.
12. Patel, R., Shah, A., & Sheth, P. (2023). A comparative evaluation of immediate and delayed loading protocols in full-arch implant-supported prostheses: A systematic review. *Journal of Indian Prosthodontic Society*, 23(1), 9–16.
13. Liu, Y., Wang, J., Zhang, Y., & Zhang, Z. (2021). Comparative analysis of implant stability in immediate and delayed loading: A clinical study. *Clinical Implant Dentistry and Related Research*, 23(5), 688–695.
14. Chen, S. T., Darby, I. B., & Reynolds, E. C. (2019). A prospective clinical study of non-submerged immediate implants: Clinical outcomes and esthetic results. *Clinical Oral Implants Research*, 30(8), 778–787.
15. Mitsias, M. E., Siormpas, K. D., Regidor, E., Mitsias, M., & Tözüm, T. F. (2018). A systematic review on success criteria and failure modes in immediate loading of dental implants. *Journal of Oral Implantology*, 44(5), 365–372.

CITATION

Lokhande, S., Gaikwad, R., Angadi, P., & Mundhada, K. (2025). Timing of Prosthetic Loading in Dental Implantology: An Evidence-Based Review of Immediate and Delayed Protocols. In Global Journal of Research in Dental Sciences (Vol. 5, Number 5, pp. 63–67). <https://doi.org/10.5281/zenodo.17402847>

Global Journal of Research in Dental Sciences

Assets of Publishing with Us

- **Immediate, unrestricted online access**
- **Peer Review Process**
- **Author's Retain Copyright**
- **DOI for all articles**