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Introduction And Objectives  
Formerly, biological models BED-TPO simulations with AI-GA were proven in a series recent publications for Head and 

Neck and Breast tumors [ 75, 87-88, 91-96]. This article shows modelling advances from those methods/results towards 

one of the most epidemiologically frequent in male and female cancer patients actually, namely lung tumors. Artificial 

Intelligence with Genetic Algorithms in engineering software is applied on radiotherapy BED model for Lung cancer. The 

objective of this research is further development, programming, obtain two types of AI-GA 2D Graphics-numerical 

Optimization, and extensive dataset results for BED model hyper fractionated TPO protocol in Lung cancer [105]. 

Therefore, the focus of the study is getting accurate and software functionality optimization of BED model for lung cancer 
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hyper fractionated RT treatment. As an illustrative-introductory example, at Illustrative Examples 1-4, and Illustrative 

Table1 it is proven the utility of 3D imaging-processing of BED model for TPO. Isodoselines/Isodosezones were invented 

and developed in previous publications [105, Author’s 1-4]. 

 

 

 

Illustrative Example 1.- From previous publications, [105, Author’s 1-4], an implementation of BED model for lung 

tumors with GNU-Octave. Total dose standard is within [ 60,85] Gy and fraction magnitude can be selected from [0.8, 2.2] 

Gy. Number of fractions interval is [34,42]. With Matlab this 3D image-processing offers more numerical extraction 

possibilities. GNU-Octave image-processing quality is acceptable. The rest of parameters for BED model, (Algorithm 1.1), 

are presented in Tables 3-4. 

 

This Third Part is focused mainly in 3D extended results and review of previous related publications, all together. Lung 

cancer Isodoselines/Isodosezones are briefed. Head and Neck cancer RT optimization results comparisons are shown. And 

a short part for Effective Clonogens modeling in breast tumor is commented. All of them present linked/related advances 

in Biological Models applications for RT treatment planning optimization. The tumor types selected, namely, lung, breast, 

and head and neck, are among the most frequent with higher incidence/prevalence worldwide. 
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Illustrative Example 2.- From previous publications, [105, Author’s 1-4], an implementation of BED model for lung 

tumors with GNU-Octave. On the left, total dose standard is within [ 60,85] Gy and fraction magnitude can be selected 

from [1.0, 2.0] Gy. Number of fractions interval is [30,40]. With Matlab this 3D image-processing offers more numerical 

extraction possibilities. GNU-Octave image-processing quality is acceptable. The rest of parameters for BED model, 
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(Algorithm 1.1), are presented in Tables 3-4. 

Illustrative Example 2.- GNU-Octave comparative 3D image-processing software. From previous publications, [105, 

Author’s 1-4], an implementation of BED model for lung tumors with GNU-Octave. On the left, total dose standard is 

within [ 60,85] Gy, but increasing fraction number could reach 120 Gy, and fraction magnitude can be selected from [0.8, 

2.2] Gy. Number of fractions interval is [34,42]. On the right, total dose standard is within [60,85] Gy, and could reach 

[90,100] GY, and fraction magnitude can be selected from [1.0, 2.0] Gy. Number of fractions interval is [30,40]. With 

Matlab this 3D image-processing offers more numerical extraction possibilities. GNU-Octave image-processing quality is 

acceptable. The rest of parameters for BED model, (Algorithm 1.1), are presented in Tables 3-4. 

 

Illustrative Example 4.- Quadruple GNU-Octave simulation, from previous publications, [105, Author’s 1-4], an 

implementation of BED model for lung tumors with GNU-Octave. (1). - Total dose standard is within [ 60,85] Gy, but 

could reach 120 Gy, fraction magnitude can be selected from [0.8, 2.2] Gy. Number of fractions interval is [34,42]. (2). - 

Total dose standard is within [ 60,85] Gy, but could reach 100 Gy, fraction magnitude can be selected from [1.0, 2.0] Gy. 

Number of fractions interval is [30,40]. (3). - Total dose standard is within [ 60,85] Gy, but could reach [100,120] Gy, 

fraction magnitude can be selected from [1.4, 2.6] Gy. Number of fractions interval is [24,36]. (4). - Total dose standard is 

within [ 60,85] Gy, but could reach [90,100] Gy, fraction magnitude can be selected from [2.0, 2.5] Gy. Number of 

fractions interval is [20,30]. Therefore, it is proven the efficacious applications for TPO of the 3D image-processing of 

BED model to select the most exact personal RT treatment at any patient. With Matlab this 3D image-processing offers 

more numerical extraction possibilities. GNU-Octave image-processing quality is acceptable.  The rest of parameters for 

BED model, (Algorithm 1.1), are presented in Tables 3-4. 

Epidemiologicaly, the importance of lung cancer screening among smokers and individuals with risk factors, has been 

proven recently. The reason is that survival rate after 5 years among early-stage diagnosed lung tumors is significantly 

higher [ 96, 106, 109, 111]. Surgical resection of lung tumors at stage I (T1–2, N0) NSCLC yields satisfying outcome 

results with 5-year survival rates of 60–70%, and remains at present the golden standard in this population. After 

resection, radiotherapy is optional. 
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Lung tumors are a heterogeneous type of cancer. Their incidence and prevalence are statisticaly among the highest 

percent of all tumors and constitute the highest deaths cancer rate at present. In general, [96], Non-Small-Cells-Lung 

carcinoma has a prevalence of approximately 85% of all lung tumors, while Small-Cells-Lung carcinoma shows about 

15% of prevalence. In addition, lung and breast cancer show be the highest incidence in brain metastases [100]. For 

example, [90], 234,000 Primary Lung cancer cases in USA in 2018 with 154,050 deaths. In 1990 the incidence peak was 

[ 70 / 100,000 population], in 2018 [ 57 / 100,000 population]. This specific decrease of incidence in that developed 

country is probably due to healthier population habits related to tobacco consumption and contact with other toxic 

substances/chemicals. The most important oncological causal factor for lung cancer is proven be tobacco consumption, 

even in passive smokers. However, further pathogenesis factors are mainly chemical, from the external media 

intake/contact. Namely, radon gas, passive smoking, prior radiation from any radiation source [39-40,76-80], inhaled 

chemicals (polycyclic aromatic hydrocarbons), heavy metal inhaled particles and/or micro-nano particles. Among 

previous diseases, for instance pulmonary fibrosis. If any potential patient is smoker and at the same time is in contact 

with carcinogenetic chemicals, the oncogenetic synergism factor increases the probability of lung cancer. Therefore, 

although the tobacco consumption is decreasing in developed countries, it does not happen so in underdeveloped ones. 

This has caused an incidence/prevalence social-geographic-pathology rate displacement towards those countries. In 

addition, when smoking, the oral cavity can accumulate tobacco and alcohol as oncogenetical factors. This pathogenesis 

can cause concomitant diseases associated to the main lung tumor.  

 

The radiosensitivity of tumor cells for optimal RT treatment has two main factors to be considered [82, 109], namely, 

alpha and betha coefficients and repopulation (Tumor Cells Intrinsic Radiosensitivity). From about 4 days after dose 

fraction irradiation, the fraction of clonogenes increases almost exponentially. Intrinsic radiosensivility is a crucial factor 

for Biological Effective Dose because the model depends on alpha and betha coefficients. The mathematical reason is 

that the exponential for survival fraction for radiobiological models is modified by these important parameters 

(Algorithm 2), [23]. According to [ 109], the alpha values vary [0.72, 0.52], and the betha one’s change [ 0.047, 0.034], 

related to intermediate plating-delayed plating. In other words, RT schedule and patient personalized treatment for lung 

tumors should consider intrinsic radiosensitivity both for tumoral and normal tissues, when treatment planning 

optimization is calculated (NTCP, normal tissues complications probability and TCP, Tumor Control Probability 

constitute essential complementary probabilistic parameters when designing TPO). 

 

The influence of oxygen model is a factor to be taken into account when using BED model. The main reason is the 

oxygenation factor on the numerical magnitude of alpha and betha parameters. A basic model is as follows, where, (αo, 

βo) and (αh, βh) are the radio sensitivities under oxygenated and hypoxic conditions respectively (Malinen et al. 2006): 

αh =αo /OER and βh =βo /OER2 

 
Where, 

OER :  oxygen enhancement ratio. 

αo :  Alpha magnitude in oxygenation. 

αh : Alpha magnitude in hypoxygenation. 

βo : Betha magnitude in oxygenation. 

βh  : Betha magnitude in hypoxygenation. 
 

This distribution of hypoxia has also been used in previous modelling studies (Nahum et al. 2003; Wang et al. 2006), as a 

consequence the proportion of the total initial number of clonogens. This proportion is predicted by probability theory. 
 

The influence of oxygen is linked to models of alpha and betha parameters related to the oxygen enhancement ratio 

(OER), whose formula is large and not set in the paper. The most important is: 
 

If OER is higher than 1, alpha-hypoxia and betha-hypoxia decrease, then the Survival Fraction Equation negative 

exponential because alpha-oxygenated and betha-oxigenated increase. Therefore, in general, osygenated cells are more 

radiosensitive. Therefore, to get a survival fraction in oxygenated cells requires less radiation magnitude in general. 
 

In brief, the α-hypoxia and β-hypoxia parameters for radiosenstitivity depend on PO2, and this dependence can be 

described by the oxygen enhancement ratio (OER). In this classical oxygenation-radiosensitivity model the most 

important formulas are (Malinen et al. 2006): 
 

αh =αo /OER and βh =βo /OER2 
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Where, (αo, βo) and (αh, βh) are the radiosensitivities under oxygenated and hypoxic conditions respectively. 

 

Today, biomarkers are getting an important role in order to predict the survival time, optimal chemotherapy, and both 

characteristics at the same time [112]. Table 1 shows a biomarkers classification into P-Biomarkers (Biomarkers for 

Prognosis), T-Biomarkers (Biomarkers for Optimal Treatment), and H-Biomarkers (Hybrid Biomarkers Group), 

[Author’s proposal]. General Biomarkers classification. Nano-Biomarkers is an open research field with potential 

perspectives in future [112]. Just remark that Biomarkers are is extent, diverse and difficult as involves biochemistry, 

molecular biology, medicine-pharmacology, medical physiology and several other fields. Therefore, this Table is simple 

based on Author’s proposal classification. Hence, Biomarkers can be classified into two groups. Namely, T-Biomarkers, 

those specific for treatment, and P-biomarkers, those specific for prognosis, [ Author’s proposal, Table 1]. 

 

Table 1.- Biomarkers Author’s proposal of modern classification based on [101, 108, 109, 112]. 
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In recent years, the TNM stage taxonomy was improved in the seventh edition of the staging guidelines to set a 

combination of TNM parameters with survival outcomes rates and treatment optimal choices among stages [refs]. Then, 

interrelated with TNM stages, mainly the survival rate, and prognosis rate, location, types of selected treatment strategies, 

divided into in stages I, II, III and IV are nowadays considered complementary. TNM classification has also defined 

survival rates for every stage. For example, T1a and IA show get the approximately equal survival rate after 5 years of 

about 50%. The interrelation of both criteria can be considered complex, since survival outcomes, surgery resection 

indication, RT treatment, chemotherapy and immunotherapy are linked to several stages of both taxonomies. For early 

stage: CT screening proven e useful. Low dose CT was proven be useful in screening. Screenings to get an early-stage 

diagnosis, and obtain an optimal treatment, are focused mainly on selected population smokers and high risk professions 

risk factors (such as toxic chemicals). TNM classification complemented with histologic grade is used today for precise 

diagnosis-stage of lung tumors. For example, TIa stage shows be the best survival rate after 5 years, 70%, while IV has a 

10%. Pleural invasion, particularly the presence of tumor at the surface of the visceral pleura, has been an indicator of a 

poor prognosis.  

Since radiotherapy treatment is indicated in all TNM lung cancer stages, it is possible to set a practical classification for 

specific lung tumor RT treatment, [author’s proposal]. PTV Type 1 is a clinical planning for T and N stages located within 

thorax or very close into thorax to lungs. PTV Type 2 is the RT planning for N and M stages which are not close to 

primary lung tumor, such as, upper nodules at cervical-neck level, distant axile nodules or brain metastases.  

 

Radiation therapy treatment is applied at all stages of lung cancer. Even at M stage, the brain metastases are treated with 

radiation, and when their diameter is about 5cm, radiosurgery is indicated [111]. Lung radiation has special anatomical and 

physiological constraints compared to other organs. Some of them are lung density inhomogeinity, which is a synergic 

difficulty with PTV volume changes with lung breath dynamics. During radiation delivery, the lung tumor target borders 

could vary about 2-3 cm [111], and at the same time that implied a dynamic density PTV change.    

 

Radiotherapy biological models come from initial radiobiological theoretical and experimental studies [75, 87-88, 91]. 

Radiobiological interaction with normal tissues was researched for radioprotection [76-80]. Then, two practical branches 

emerged simultaneously from the equivalent mathematical modelling investigation. Namely, to use radiobiology 

knowledge for radiation protection of normal tissues, and conversely to set radiobiological models to approach/improve 

the cell-kill method in tumoral tissues [22-25, 89-91]. From this branch-duality, a practical swapping of equivalent 

parameters emerged for practical/easier research and clinical-biological applications. For instance [α, β] typical Linear 

Quadratic models parameters. These mathematical models both for normal and tumoral tissues were usually based on 

exponentials whose power-functions depend on a linear/nonlinear equation of radiation dose variable with a number of 

experimentally validated coefficients/constants [22-25, 76-80, 87- 91, 92-96].   

 

The previous works and novelty in this artificial intelligence method for hyperfractionation precision-schedule method, 

[91,98,99,105], showed accurate results for survival fractions, 3D Graphical Optimization charts, and a database of 

numerical results in other type of cancer, e. g., prostate. To reach the research objectives in this study, nonlinear GA-PMO 

engineering software was programs for PMO-BED Lung cancer basic model. The implemented specific software got to get 

going towards improvements in GA programming and TPO radiotherapy optimization for BED model hyperfractionated 

dose delivery protocol [91].   

 

Therefore, the innovation of this contribution shows a number of aspects. The first one is the application of Pareto-

Multiobjective Optimization methods for lung cancer with in vivo dataset. The second one is the 3D Isodoselines in TPO 

with new imaging results, based on previous recognized publications [ 91, 98, 99, 105, 111]. The third is also the 

presentation of 3D Isodosezones improved imaging-processing results based on other recent article. Previous work with 

these methods belongs to prostate tumors and lung ones [ 91, 98, 99, 105, 111]. The primary algorithms and software 

results for these Pareto-Multiobjective Optimization were initially developed in these contributions. 

 

Consequently, the innovation of this study is to carry out AI-GA programming for lung cancer hyperfractionation TPO in 

BED models. Several simulations with Genetic Algorithms are shown in 2D charts and numerical results. The algorithm 

for multiobjective pareto optimization is detailed and programmed. Results comprise GA simulations for two types of 

parameters-BED models according to literature [75, 87-88, 91]. Matlab system was used for GA programming with 

acceptable graphical processing images and numerical data findings.  

Succinctly, advanced research from former Nonlinear Pareto-Multiobjective GA optimization was got for BED models in 

Lung cancer [87,88, 91]. Applications for radiotherapy TPO, dose delivery hyperfractionation schedule future biological 

model advances in modern RT are also presented. 
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Mathematical Algorithms and Software Engineering Methods 
The model set in software patterns is the basic BED one [20-25,89]. There is a number of variations/simplifications of 

this model in the literature [20-25, 39,40,75, 85, 91]. One reason is that the radiobiological parameters determination 

vary according to experimental radiobiology data findings [20-25]. Therefore, those simplified BED models take 

statistical values of, for example, TPotential and others. In this section the algorithm is explained, at Results one, the Pareto-

Multiobjective Optimization method parameters to put forward sharply the graphs are detailed.  
 

Besides, in biological models TPO applications, there is a medical physics controversy/discussion about 

Hyperfractionation versus Hypofractionation dose TPO delivery. That point is beyond the scope of this study since the 

objective of the research is AI-GA optimization of hyperfractionation dose.  
 

In this section the algorithms are explained, and at results one, the Pareto-Multiobjective Optimization method 

parameters to put forward sharply the graphs are detailed. However, for sharp learning, Table 2 shows the main 

simplified concepts of Genetic Algorithms applied on Pareto-Multiobjective Optimization.  
 

It is very frequent the application of inverse least square techniques for RT inverse planning. Genetic algorithms 

constitute a more modern method, and GA Pareto-Multiobjective has also been applied recently [58, 67,110]. The genetic 

algorithms (GA) optimization method, closely linked to modern artificial intelligence, has experienced a recent increase 

in the use of its optimization applications/variants [ 58,67].  
 

Although the applied GA method in this contribution is the standard, each one of the GA variants has its advantages and 

disadvantages [10,11]. Basically, GA is a stochastic mixed method similar to Monte Carlo but simpler/faster in general. 

That is, in plain language, successive generations of values (parameters) are computed by the software until the optimal 

parameters figures are obtained. Actually, the multiple combinations of random/stochastic methods, GA variants, and 

modern programming techniques, offer an extensive choice of options for the optimization designer. In this article, the 

parameters, namely, are, dose fraction magnitude, number of fractions, and total treatment time. 
    
Therefore, here GA usually selects a randomly large number of successive generations of dose fractions number, fraction 

magnitude, and total treatment time, for the objective function maxima accuracy subject to constraints desired intervals 

for dose fractions number, fraction magnitude, and total treatment time. For every generation, three types of choices are 

applied for the OF. Namely, elite selection, after-mutations, and cross-over changes in the variables’ values [110]. GA 

program stops when the number of generations subject to the constrains and/or the numerical tolerance for a generation is 

reached even if that solution is a local or global minimum. In other words, speaking roughly, GA stops when the best-

possible and desired data for TPO that is needed is obtained. 
 

SIMPLIFICATION OF GENETIC ALGORITHMS METHOD  

APPLIED TO PARETO-MULTIOBJECTIVE OPTIMIZATION 

PARAMETER UTILITY MATHEMATICAL SIGNIFICANCE 
NUMBER OF 

GENERATIONS 
To obtain the best results with the more efficacious 

generations number. The program is selecting the 

most accurate results (functions) after every 

generation, and discarding those (functions) whose 
errors are higher than constraints.  

In general, the error decreases when reaching a 

prime number of generations, after that, the 

error differences are not significant 

BEST FIT 
GENERATION 

The program finally shows those generations 
(functions) that match the constraints better. 

With Pareto-Multiobjective, the program shows 
two parameters at 2D chart: namely, best fit for 

pareto1 and best fit for pareto2 
PARETO FRONT The GA program works with two different functions, 

pareto1 and pareto2. That is presented in a 2D graph 

and the software-researcher can find the optimal 

points that satisfies better the objectives for both at 
the same mathematical parameters. 

The most important when GA is applied on 

Multiobjective Optimization. Along the pareto 

front points given in 2D graph, the planner can 

select the best combination for both pareto 
function constraints.  

DISTANCE AMONG 
INDIVIDUALS AND 

FITNESS OF EACH 

INDIVIDUAL 

Along successive generations, they show how the 
individuals (values of pareto1 and pareto2) satisfy the 

constraints and algorithm. Then there are two 

parameters, accuracy for each and every individual 
independently, and comparative precision among 

individuals of every generation. 

It gives the mathematical differences among 
successive generations. If it is not high, the 

meaning is that the method has got acceptable 

results. 

 

Table 2.- Genetic Algorithms applied on Pareto-Multiobjective Optimization simple explanation. 

Pareto-Multiobjective method is a specific optimization one, and here is implemented with GA. This method, for 

example, is extensively used also in economics to obtain optimal-comparative values for two options (actually 3 ones is 
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possible). Namely, Objective 1 and Objective 2. The method of multiobjective optimization for simple constraints begin 

with setting an objective function for the two different objectives with this type of functions: 

 

Where 

F(x) : Main function to be optimized. 

fi ( x ) : Every function of same variables ( x ). 

Ki  (x) : Constraints functions such as in general N ≠ M. 
 

(1) 

Algorithm 1.- The basic concepts of constrained Multiobjective Optimization.  
Then, two alternatives (in paper total dose 50-55 Gy for Pareto1, and 60-65 for Pareto2, and for second simulation, table 

2, 60 Gy Pareto1 and 65 Gy Pareto2, table 2, see all tables 1 and 2) are set within a built OF such as, 
 

First Step Get the Bed Model as It Was Done for Head and Neck Cancer in Previous 

Publications: 
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Algorithm (1.1) 

Second Step: Setting This Model in L1 Objective Function: 
Therefore, the Pareto-Multiobjective Optimization basic BEDEffective created in this contribution algorithm-model was set 

in software, [91]. Parameters are detailed in Algorithm 1 [85-91]. Two different PMO optimization programming series 

are presented with different parameter intervals magnitudes, Tables 1-2. This BED model constitutes the fundamentals 

for fractionate radiotherapy, although there are variations among authors [22-25]. Formulation is based on previous 

studies computational software [1-21,85-91].  The algorithm that was set, with Chebyshev L1 norm, [Algorithm 1], reads, 

 

 

(Akgorithm 2) 

Where, 
 

BED: The basic algorithm for Biological Effective Dose initially developed by Fowler et Al. [22-25, 89]. 

K: Optimal Number of fractions for hyperfractionated TPO. Optimization parameter. [22-25, 89]. 

D: Optimal Dose magnitude for every fraction. Optimization Parameter [Gy]. [22-25, 89]. 

Α: The basic algorithm constant for Biological Effective Dose models. Radiobiological experimental parameter. [Gy-1]. [ 

22-25, 89]. 

Β: The basic algorithm constant for Biological Effective Dose models. Radiobiological experimental parameter. [Gy-2]. It 

is very usual to set in biological models [ α / β in Gy]. 

TTreatment: The overall TPO time. This parameter varies according to authors’ and institutions/hospitals criteria. [22-25, 

89]. 

TDelay: The overall TPO time delay for clonogens re-activation. This parameter varies according to authors’ experimental 

research. 
 

TPotential: The potential time delay for tumor cell duplication. This parameter varies according to authors’ experimental-

theoretical research. 

DOSE: The dose magnitudes for lung cancer simulation algorithm for Biological Effective Dose [22-25, 89]. Software 

patterns were calculated around intervals lung DOSE ϵ [50, 65] Gy. 
 

Algorithm 2.- Lung cancer PMO algorithm [1-21,85-88] set in software loops, patterns, and arrays for AI-GA. The 

parameters interval-magnitudes for optimization are detailed in Tables 1-2. It is an improvement from a series of 

previous research in radiotherapy PMO-AI for Breast and Head and Neck tumors [75,87-88,91]. 

Pareto-Multiobjective Dataset for Lung Cancer Optimization 
In the following, Table 2 shows the first simulation series according to data from [89]. Table 3 details dataset for second 

simulations series with experimental-theoretical magnitudes from [22-25]. In programming task, several trials around 

these values were done. 
 



Global J Res Eng Comput Sci. 2025; 5(4), 51-79 

                    @ 2025 | PUBLISHED BY GJR PUBLICATION, INDIA  
 

61 

GENETIC ALGORITHM ARTIFICIAL INTELLIGENCE OPTIMIZATION PARAMETER INTERVAL FOR 

LUNG TUMORS FIRST OPTIMIZATION 

PARAMETERS WITH 

PROGRAMMING INTERVALS 

[ First optimization with [ ref 89] 

criterion] 

MAGNITUDE INTERVAL ADDITIONAL 

Dose fractions number Several trials 

[ 30, 40], [ 27, 32] 

Schedule in literature [1-22-25,74-

89,91, references for all this column]. 

Dose fraction magnitude Several trials 

[ 1.5, 2.5], [ 1.3, 1.7], Gy 

Schedule in literature. Set with 

intervals according to [89] criteria. 

TTreatment Several trials 

[ 25,36], [30,40] Days 

Schedule in literature. Set with 

intervals according to [89] criteria. The 

RT treatment [22-25] varies according 

to weekends, vacations, secondary 

effects in patient, circumstances, etc. 

TDelay [15,20] 

Different from second simulation 

series 

Schedule in literature. Set with 

intervals according to [89] criteria. 

TPotential 

[ programming interval] 

[4.5, 5.5] 

At model denominator and different 

from second simulation series 

Schedule in literature. Set with 

intervals according to [89] criteria. 

Dose interval in Objective Function 50-55 Gy for Pareto function 1 

60-65 Gy for Pareto function 2 

Schedule in literature. Set with two 

total dose Pareto Functions according 

to [87-89, 91] different criteria. 

α 
[0.1, 0.6] Gy-1 From [89] 

β 
0.035   Gy-2 

Different from second simulations 

From [89] 

 

Table 3.-The first series simulations were done with approximate numerical-experimental data from several authors, 

mainly [89]. These parameter intervals are different from second series simulations. 

GENETIC ALGORITHM ARTIFICIAL INTELLIGENCE OPTIMIZATION PARAMETER INTERVAL FOR 

LUNG TUMORS SECOND OPTIMIZATION 

PARAMETER 

[ Second optimization with [ refs 22-

25,83] and related author’s radiotherapy 

text books] criteria] 

MAGNITUDE INTERVAL ADDITIONAL 

Dose fraction number [25, 35] and [ 20, 30] Schedule in literature [1-22-25,74-

89,91-96, references applicable for all 

this column]. 

Dose fraction magnitude [2.25, 3.25] Gy Schedule in literature. Set with intervals 

according to [89] criteria. 

TTreatment [30,32] Days Schedule in literature. Set with intervals 

according to [22-25] criteria. The RT 

treatment [22-25] varies according to 

weekends, vacations, secondary effects 

in patient, circumstances, etc. 

TDelay [21] Days standard  Schedule in literature. Set with intervals 

according to [22-25] criteria. 

TPotential 

[programming interval] 

[3.30, 4.10] Days Schedule in literature. Set with intervals 

according to [22-25] criteria. 

Dose interval in Objective Function 60 Gy for Pareto function 1 

65 Gy for Pareto function 2 

Schedule in literature. Set with two total 

dose Pareto Functions according to [87-

89, 91] different criteria. 

α [0.1, 0.6] Gy-1 From [22-25] 

β 0.0581   Gy-2 From [22-25] 

Table 4.-The second series simulations were done with approximate numerical-experimental data from several authors, 

mainly [22-25]. These parameter intervals are different from first series simulations. 
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Results 
Results are 2D AI-GA graphical and numerical. As shown in Table 2, the most important GA parameters are presented 

and explained. That is, Best Fit, Number of Generations and Pareto-Front. In Pareto-Front, the optimal point was selected 

to get the best results, Figure 1.  Figures 6-7 show the histograms score data results, that is, the difference between the 

pareto1 and pareto2 scores. 

 

For first simulations, Figures 1-4 show PMO results—Figure 3.1 is a variant of Figure 3. For the second group, 2D 

imaging processing are Figures 5-7. Tables 3-4 present details of both numerical PMO optimization results. The most 

important to validate the results are those ones that show the Pareto Front. Average distance among generation 

individuals, score histograms, stopping criteria, or fitness for every individual, are also significant. All the 

complementary details and shown in additional 2D charts for first and second AI-GA PMO optimization.  

 

Maximum number of generations programmed is 300. Some other generations number to compare were selected as 100, 

General running time range for all images and both optimization trials is about 2-6 minutes. Numerical results, Tables 3-

4, resume for PMO in BED model. Dose fraction magnitudes, number of fractions and optimal total RT treatment values 

are explained in Tables 3-4. 

 

GA 2D RESULTS 
First simulation 2D GA results are shown in Figures 1-4. The data for first and second simulation is set at Tables 3-4.  

Second one are presented in Figures 5-8. There are simple image processing charts and multifunctional images also. In 

Figure 1, the most important is the Pareto-Front first chart. Complementary, the Distance among individuals and the 

fitness of each individual is shown, concepts in Table 2. 

 

First Simulation 2D Results 

 
 

Figure 1.-First optimization Multifunctional AI-GA 2D graph. The Pareto-Front is the most important graph. When it 

shows low residuals the GA optimization is acceptable for Algorithm1. In this study both f 1 and f 2 show low 1.5 and 

3.5 residuals. The number of points on the Pareto front was: 18. The number of generations is 300. Note the precision 

reached: pareto1 and pareto2 differ in approximately 1 Gy. Average distance among individuals is approximately lower 

than 0.5, and ftness of every individual is acceptable. 

 

 

 

 

 

 

 



Global J Res Eng Comput Sci. 2025; 5(4), 51-79 

                    @ 2025 | PUBLISHED BY GJR PUBLICATION, INDIA  
 

63 

 
 

Figure 2.-Stopping criteria for first optimization showing 100% criteria met. At Y axis generation and time. 

 

 

Figure 3.-This is a significant 2D GA graph. Most of average distance magnitude in lower than 2 from 50th generation on. 

The number of points on the Pareto front was: 18. The number of generations is 300. 
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Figure 3.1.-Refinement of first optimization GA 2D graph from Figure 3. Average distance magnitude is approximately 

lower than 0.5 from 150th generation on. 

 

Figure 4.-First optimization Multifunctional GA 2D graph. It comprises rank histograms, note the error decreasing 

gradient. Fitness of each individual, inset, at second graph. Average distance at lowest image. All parameters show be 

precise, specially the rank histograms. 
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 Second Simulation 2D Results 

 

Figure 5.- Second optimization Multifunctional AI-GA 2D graph. The Pareto-Front is the most important graph. When it 

shows low residuals the GA optimization is acceptable for Algorithm1. In this study both f 1 and f 2 show lower than 3 

residuals. The number of points on the Pareto front was: 18. The number of generations is 300. Average distance is lower 

than 1, about 0.5 from 50th generation on. One option for a balanced pareto-choice with approximate equal residuals for 

both pareto functions is marked inset with green arrows. In this second simulation pareto1 and pareto2 differences is 

lower than the first one. 

 

 

 

Figure 6.- Stopping criteria for second optimization showing 100% criteria met. At Y axis generation and time. 

Lower chart shows distance among individuals, in general lower than 0.1. 
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Figure 7.-Second optimization Score Histogram range. 

 

GA Numerical Results 
This section shows a brief of numerical dataset corresponding to imaging processing AI-GA results, Tables 4-5. It is 

useful to compare the dose per fraction and number of fractions among all optimal results. 
 

First Simulation Numerical Results 
The first simulation results are shown in Table 5. The second in Table 6. Main comparison should be among dose per 

fraction and number of fractions. Results are according to literature and recent advances [111] several hospital data. 
 

GENETIC ALGORITHM ARTIFICIAL INTELLIGENCE OPTIMIZATION NUMERICAL RESULTS FOR 

LUNG TUMORS FIRST OPTIMIZATION 

PARAMETERS WITH 

PROGRAMMING INTERVALS 

[ First optimization with [ ref 89] 

criterion] 

MAGNITUDE INTERVAL ADDITIONAL 

Dose optimal fraction number  [27, 31] Fractions Usual protocol in literature [1-21,74-89]. 

Dose fraction optimal magnitude  [1.60, 1.90] Gy 

 

Usual protocol in literature [1-21,74-89]. 

Set with intervals according to different 

criteria. 

TTreatment [30,33] Days 

Different from second 

simulations 

Usual protocol in literature [1-21,74-89]. 

Set with intervals according to different 

criteria. The RT treatment varies 

according to weekends breaks, secondary 

effects, patient circumstances, etc. 

TDelay [12,16] Days 

From [89]  

Usual protocol in literature [1-21,74-89]. 

Set with intervals according to different 

criteria. 

TPotential 

[programming interval] 

[4.5, 5.5] 

Different from second simulation 

series 

Usual protocol in literature [1-21,74-89]. 

Set with intervals according to different 

criteria. 

Dose interval in Objective Function 58 Gy for Pareto function 1 

65 Gy for Pareto function 2 

Usual protocol in literature [1-21,74-89]. 

Set with two total dose Pareto Functions 

according to different criteria. 

α [0.1, 0.6] Gy-1 

Set in arrays [ 0.35 ± 0.25] 

Like second simulations 

From [89] 

β 0.035   Gy-2 

Set in arrays 

From [89] 

Table 5.- PMO Artificial Intelligence with GA optimization first simulation series numerical results. Numerical results 

intervals, after several trials, match approximately [89] data. 
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Second Simulation Numerical Results 

GENETIC ALGORITHM ARTIFICIAL INTELLIGENCE OPTIMIZATION NUMERICAL RESULTS FOR 

LUNG TUMORS SECOND OPTIMIZATION 

PARAMETER 

[ Second optimization with [refs 

25,83] and related author’s 

radiotherapy text books criteria] 

MAGNITUDE INTERVAL ADDITIONAL 

Dose fraction number [19, 22] Usual protocol in literature [1-21,74-86]. 

Dose fraction magnitude [2.0, 2.5] Gy Usual protocol in literature [1-21,74-86]. Set 

with intervals according to different criteria. 

TTreatment [30,32] Days Usual protocol in literature [1-21,74-86]. Set 

with intervals according to different criteria. 

The RT treatment varies according to 

weekends breaks, secondary effects, patient 

circumstances, etc. 

TDelay [22,35] Days Usual protocol in literature [1-21,74-86]. Set 

with intervals according to different criteria. 

TPotential 

[programming interval] 

[3.30, 4.10] Days Usual protocol in literature [1-21,74-86]. Set 

with intervals according to different criteria. 

Dose interval in Objective Function 60 Gy for Pareto F function 1 

65 Gy for Pareto F function 2 

Usual protocol in literature [1-21,74-86]. Set 

with two total dose Pareto Functions 

according to different criteria. 

α [0.1, 0.6] Gy-1 From [25,83, and related authors’ 

radiotherapy text books] 

β 0.0581   Gy-2 From [25,83, and related authors’ 

radiotherapy text books] 
 

Table 6.-Brief of PMO Artificial Intelligence with GA optimization second simulations series numerical results in Head 

and Neck tumors for advanced TPO. Dataset for software [ 22-25]. 
 

Previous Studies for Lung Cancer Isodoselines and Isodosezones, A Briefing 
This section comprises the radiotherapy reminder of Isodoselines and Isodosezones from previous contributions, [ 

Author’s 1-2], Isodoselines and Isodosezones creation can be useful/practical in TPO when using BED or other models. 

For necessary understanding, Illustrative Examples 1-4, the following essential concepts are highlighted: 

Definition 1.- In RT-3D Treatment Planning, a 3D Isodoseline is demarcated by a line whose dose-distribution 

parameters can vary for optimal planner choice while keeping constant the magnitude of total radiation dose delivered [ 

Casesnoves, 2022].  

Definition 2.- In RT-3D Treatment Planning, a 3D Isodosezone is demarcated by a polygon whose dose-distribution 

parameters can vary for optimal planner choice while keeping constant the total dose delivery magnitude [ Casesnoves, 

2022]. 

Some selected 3D image-processing Isodoselines and Isodosezones for TPO lung tumors, Figures 7.1 and 7.2 are, 
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Figure 7.1.- From [Author’s 1-2], Matlab 3D Isodosezone for two variables. Namely, the choice is number of fractions 

dose and total treatment dose in lung TPO. Namely, marked inset, [70,75] Gy isodosezone (green boundaries). Marked 

inset, [70,75] Gy isodosezone delimited by isodoselines. In literature, TPotential is usually set as 28-30 days for early 

stage lung cancer. Precision can be checked setting in Algorithm (1.1) at every extreme values of any long Isodosezone. 

Inset (red), and Isodoseline constrained to 40 fractions and for an interval of [65,85] Gy. The 3D Isodosezone 

fundamentals for Interior Optimization calculations, are implemented into this 3D surfactal isodosezone. Imaging-pattern 

numerical-intervals for plotting were obtained from PMO but with with in vivo lung tumor BED model parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. From [Author’s 1-2], Matlab 3D Isodosezone for two variables, at XY plane, number of fractions and dose 

per fraction, the choice. Namely, Number of fractions and dose per fraction in lung TPO. Marked inset, [70,80] Gy 

isodosezone delimited by isodoselines. The precision can be checked calculating the product between fraction dose and 

number of fractions at each extreme of the long isodoselines. For instance, at lower isodoseline (yellow), 34 x 1.7 is 

approximately equal to 41 x 1.4 (taking one mdigit is exactly equal). The Isodosezone fundamentals from Interior 

Optimization calculations, are implemented into this 3D surface. The software-programming pattern intervals for plotting 

were taken from previous pareto multiobjective optimization developments but within vivo lung tumor BED parameters. 

Each and every BED total dose is set along 3D Isodoszone, while ( k ) and ( d ), and other BED model parameters change 

along the isodoselines-isodosezones surfactal length when cursor is moved over the surface. 

 

Comparative Results with Head and Neck Cancer Computational Intelligence Ga Algorithm 

Optimization Research 
Computational Intelligence GA comparison with the same method for Head and Neck tumors, Figures 8-9. These images 

included here are newly-developed different imaging processing PMO results than obtained in [87]. The most significant 

to check the results are the Pareto Front images, Figure 8. Figure 9 is a multifunctional image AI-GA processing for 

Head and Neck cancer RT treatment based on [87,91] software. 

 

Distance among individuals, score histograms, and fitness of every individual are shown, Figure 9. Maximum number of 

generations selected was 300-800. Running time for Figure 8 is shorther than Figure 9, both processes is from 2 to 6 

minutes. 

 

 
 
Figure 8.-This is the most pareto-multiobjective significant graph given by software when PMO is programmed. Note 

that Objective 2 shows be better than Objective 2 for Head and Neck tumors AI-GA optimization [87-88]. The number of 

points on the Pareto front was: 18. The number of generations is 300-800. 
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Figure 9.-Head and Neck tumors Pareto-Optimization Multifunctional GA 2D graph. Developed with software for [ 87-

88]. It shows Distance among individuals, Fitness of every individual, and Score Histogram. Running time is about 3-4 

minutes. 

 

Comparative Results with Breast Cancer Effective Clonogens Model in Linear Quadratic 

Method, From Previous Contributions 
From [Author’s 3], a brief review in breast cancer. Radioprotection in radiotherapy and Environmental Radioprotection 

constitute a fundamental part to minimize and/or decrease the hazard ionizing radiation sources damage on the 

population. Breast cancer Radiation Protection for the patient during routinary RT treatment avoids multiple risk factors. 

Namely, RT overdose, OARs damage, increase of radiation use for high incidence/prevalence of breast cancer with 

subsequent RT oncology therapy, medical staff professional cumulative dose increase, hospital radiation contamination, 

environmental radiation contamination, and others.  

Continuing the Radiation Therapy research studies series, this review of results study objective is the implementation of 

Tumor Clonogens Effective Population Number Model for breast cancer, [Fowler 1989- 2010] and [Author’s 3]. Photon-

dose AAA model former contributions result in breast tumors Biological Models (BM) TCP parameters, [ From Author’s 

3, 1,74]. Development for 3D Graphical Optimization solutions from recent study to obtain Effective Tumor Clonogenes 

Survival Rate [ NEffective ], constitutes the purpose of this research. Photon-beam Biological Models are based mainly on 

exponential functions with radiobiological parameters, namely [α, β], whose magnitudes are determined in general with 

in vitro experimental [From Author’s 3, 19,21-24,74]. These parameters are implemented in BM to obtain Survival 

Fraction Clonogens Rate, [NS]. NS is function of [N0], namely, initial clonogens population number. However, the 

innovation of this study determines the fitted to RT treatment time initial clonogens population number with the 

calculation of NEffective for breast cancer RT treatment. Table 7 shows basic results of [NEffective] calculations for RT breast 

cancer.   

Here I short review from [refs], is shown, to remark the clonogens population importance at Biological Models. The 

classical algorithm for NEffective clonogens population breast cancer, and in tumor generally, reads, 
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Where, 
NEffective: Number of tumor clonogens in function of RT treatment protocol time. 

N0 : Initial Clonogens Number at starting RT time. 

T : Total RT Treatment time. 

TDelay : Number of delay days after standard RT treatment time. 

TPotential : Potential Tumor Doubling Clonogens time. 

Some example for results from [Author’s, 3], are as follows, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.- From [Author’s, 3], as an example, the clonogens Numerical results for Neffective  population and from [Author’s, 

3], the PMO for breast cancer. 
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Figure 10.- From [Author’s, 3], a 3D imaging processing graph for Effective clonogens population, (note logaritmic scale 

at Z, X axes). Observe the almost exponential growth from 108 logaritmic population magnitude, and also the same 

almost linear growth from 22 days to 40 days at Y axis. 

Discussion and Conclusions 
The objectives of the study were graphical and numerical optimization of standard BED model for modern Lung cancer 

TPO. The method applied was Artificial intelligence with GA Pareto-Multiobjective Optimization. It is the same 

technique from previous research with BED model for Breast and Head and Neck tumors TPO. Optimization was 

performed according to two authors’ biological BED models criteria [22-25, 87-89,91]. Therefore, it constitutes a step 

forward to apply GA for Lung cancer TPO advances.  

 

The mathematical method applied is Pareto-Multiobjective Optimization. The advantage of 2D Multiobjective 

Optimization compared to common one is to obtain at least two pareto functions, and the optimal choice can be got 

selecting the most convenient data from objective 1 and objective 2 graphs [ Figs.  1,8,9]. Compared to Tikhonov Inverse 

Optimization method, that was applied in previous publications, that constitutes an advantage [ 21,75]. However, 

classical Tikhonov methods can be considered precise and useful. A useful-comprehensive simplification of the GA-

PMO method was shown in Table 2. Complementary, and specifically for lung tumors, a Biomarkers Author’s proposal 

of modern classification based on [101, 108, 109, 112].  

   

The BED model algorithm that was selected is the standard one of the first generation. For hyperfractionation as a first 

step research choice [25, 83]. The numerical difference has not been checked implementing further generations of BED 

algorithms. However, as a tentative calculus given the numerical data obtained, it seems that the numerical differences 

could not differ significantly from the first generation model function. The L1   norm selected (Tikhonov L1    norm) was 

applied for programming simplification. In previous articles, it was found that software implementation of (Tikhonov L2  

)  norm did not show substantial differences with L1    norm. Besides, the design of the program for L2      norm results be 

more complicated and does not bring important variances. Other featureis that the implementation of the L2   norm 

implies a longer running time, which is an added difficulty. First simulation shows higher number of fractions, and lower 

magnitude of dose per fraction than the second simulation, Tables 5-6. 
  
Factually, and according to recent literature [101-109], GA-PMO method is more widely used compared to Inverse 

Optimization with Least Squares algorithm, for example, [11-16]. Recent optimization methods tend to apply/use more 

frequently evolutionary algorithms and also the variants and improved GA algorithms based on successive method-

generations.  
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3D-imaging Interior Optimization (the basic) was implemented, e. g., for superconductors modelling with acceptable 

numerical results in a series of publications, for example [110]. Although 3D-IO technique is essentially a numerical 

imaging-processing one, the 2D GA-PMO method gives also acceptable information and dataset for the approached 

problem.    

 

The software that was designed for the research is based on previous studies for applications of GA standard method, e. 

g., [110]. The implemented dataset is founded on the lung cancer current protocol doses and do not differ in magnitude 

order along the literature. As an example, these calculations boundaries and magnitude orders were modernly confirmed 

in [111]. Therefore, the constraints and boundaries set in programming patterns can be considered acceptable.  

 

In terms of programming running time, it was checked that the approximate average time to obtain a simple GA chart 

was about 2 minutes, provided that number of generations not be higher than [200, 300]. If the generations number 

increases from 150, approximately, the running time could reach 3 or 4 minutes. The Multigraphics take an average of 2 

minutes more than the simple ones. 

 

The numerical data obtained matches the average literature dataset [99-111], with very low differences. Specially the 

recent protocols in Radiosurgery [100], coincide with the dosimetry results. When numer of generations is increased, no 

significant changes are observed in magnitude orders for Pareto 1 and 2 Multiobjective Functions.     

 

The objective of the study was not discussed between hyperfractionation versus hypofractionation. However, according 

to results it si possible to comment some classical ideas about this controversial matter. There are Hyperfractionation, 

Hypofractionation, Hybrid Schedule and Accelerated Hyperfractionation dose delivery schedules. Hospital institutions 

differ in technical facilities, staff specialization, and treatment time available, therefore this question adds another 

influential factor for those optimal clinical-radiation oncology decisions.  

 

Author's criterion is that all of them should be treated/considered in function of personalized RT treatment, and the most 

important idea is that all of them depend on multiple factors [ 22-25, 87-89,91]. one important factor is the magnitude 

order of the coefficients alpha and betha for tumoral tissue at every patient, if time and hospital facilities can determine 

those.  

 

Hyperfractionation considers that the higher recovery capacity of late-responding normal tissues, in practical terms 

NTCP magnitude, is higher when contrasted with tumour-tissue. If the response of normal tissues is low, it implies that 

the quotient (alpha/betha) has a lower magnitude order). However, the more fractions get the schedule, the higher 

changes of this quotient is observed. For comparative considerations between Hyper and Hypofractionation. The dose 

difference between the plottings of TCP versus dose fraction magnitude gives essential information for selecting options 

in dose delivery schedule.  

 

The PMO-BED model image processing results are sharp in several imaging formats, from simple 2D graphics to 

multifunctional ones. These series of results can be considered acceptable, Figures 1-9, Tables 3-4. Two simulations were 

presented as objective of the research, computationally designed for head and neck tumors [82-88]. It was intended to set 

in software precise experimental constants [22,81-88]. Therefore, 3D simulations could offer a realistic graphical and 

numerical dataset this type of cancers. Two different simulations with different constraints are shown and proven. 

Currently, biological models get a rationale experimental proven through radiobiology studies [76-80].  TCP and NTCP 

constitute acceptable parameters to predict patient survival time [20, 87-88, 111].   

 

The method main advantages are graphics sharpness, low numerical residuals, demonstration of operability of this 

modern AI method, and contrast between two different BED criteria parameters. Inconvenients are that in literature 

experimental data parameters differ numerically [87-88, 91]. The algorithm is based on the simplest BED model [22-25] 

at this stage. Running time is rather longer compared to Inverse Least Squares Optimization [1-21].   

 

Grosso modo, Pareto Multiobjective BED model was got for applied for optimization of radiotherapy BED algorithm in 

Lung cancer. The practical radiotherapy physics significance is an improved radiation therapy treatment for these tumors 

RT medical physics computational planning. 

 

SCIENTIFIC ETHICS STANDARDS 
This article shows additional results that complement previous studies and contributions, recently [87-88]. All the images 

are new/improved and numerical results from former publications are extended and detailed. GA Artificial Intelligence 

software was developed originally by Dr Casesnoves on September 2022. Figures 8-9 are new but developed from 

software in [87,88,91]. All initial modelling equations were developed from previous researchers contributions [1-25,87-

88]. This article has previous papers mathematical techniques, reviews with explanations, [1-21, 75], whose use was 
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essential to make model numerical solutions and approximations. The number of Dr Casesnoves publications at 

references is intended also for reader’s learning and consultation. This study was carried out, and their contents are done 

according to the European Union Technology and Science Ethics and International Scientific Ethics norms [38,43-45]. 

This research was completely done by the author, the calculations, images, mathematical propositions and statements, 

reference citations, and text is original from the author. When a mathematical statement, proposition or theorem is 

presented, demonstration is always included. If any results inconsistency is found after publication, it is clarified in 

subsequent contributions. When a citation such as [Casesnoves, ‘year’] appears, there is not vanity or intention to brag. 

The reason is to keep clearly the intellectual property. The article is exclusively scientific, without any commercial, 

institutional, academic, religious, religious-similar, non-scientific theories, personal opinions, friends and/or relatives 

favours, political ideas, or economical influences. When anything is taken from a source, it is adequately recognized. 

Ideas and some text expressions/sentences from previous publications were emphasized due to a clarification aim [38,43-

45]. 
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