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1. Introduction 
Nonlinear differential equations are prevalent in modelling complex phenomena across scientific disciplines, particularly 

magnetohydrodynamics (MHD) and nanoparticle dynamics. The auxiliary equation mapping method has proven effective 

in finding exact solutions for nonlinear Schrödinger equations with Kerr’s law nonlinearity, and is applicable to soliton 

dynamics, quantum plasma, and fluid dynamics (Cheemaa et al., 2018). This method has been successfully applied to 

ion-acoustic solitary waves in plasma physics (Cheemaa et al., 2019). Data-driven approaches have emerged as 

alternatives to the traditional analytical methods. The auxiliary equation-mapping method is effective for certain 

nonlinear equations, whereas data-driven approaches offer possibilities for model discovery. These advancements are 

crucial for applications in nuclear fusion, material processing, and biomedical devices (Mahabaleshwar et al., 2017). 
 

Hybrid nanofluids, containing multiple nanoparticle types in a base fluid, show superior thermal properties compared to 

conventional fluids (Rasheed et al., 2021; Suneetha et al., 2022). These heat-transfer fluids are useful in solar energy 

systems, industrial processes, and biomedical engineering. The thermal conductivity of hybrid nanofluids depends on 

nanoparticle concentration, mixture ratio, and base fluid composition. A study of Al2O3−ZnO hybrid nanofluids showed 

40% thermal conductivity enhancement at 2:1 mixture ratio and 1.67% volume concentration, with a deeping effect at 1:1 

ratio (Wole-Osho et al., 2020). Artificial neural network (ANN) and support vector regression (SVR) models effectively 

predict thermal conductivity, achieving R2 values of 0.99997 and 0.99788 (Adun et al., 2020). Adaptive neuro-fuzzy 

inference systems exhibit high accuracy with an R2 value of 0.9946 (Wole-Osho et al., 2020). These techniques enable 

better design and optimisation of heat transfer systems. 
 

The modified Laplace–homotopy asymptotic method (MLTHAM) combines the Laplace transform and homotopy 

methods to solve complex differential equations in magneto-hydrodynamic (MHD) hybrid nanofluid flows. Gireesha et 

al. (2025) reported using the homotopy perturbation Sumudu transform method (HPSTM) for hybrid nanofluids’ coupled 
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momentum and heat equations. Khan (2024) discussed Laplace and Sumudu transforms to analyse velocity fields in 

MHD flows of second-grade tetra-hybrid nanofluids. Although MLTHAM combines these methods, alternative 

approaches exist. Nadeem and Abbas (2020) used the Runge-Kutta-Fehlberg method for modified nanofluid flow over an 

exponential stretching surface, while Zainal et al. (2020) employed MATLAB’s bvp4c function for unsteady three-

dimensional MHD non-axisymmetric Homann stagnation point flow. 
 

He (2006) presents the He-Laplace method, combining the Laplace transform with homotopy perturbation method for 

nonlinear partial differential equations. Tripathi and Mishra (2016) applied LT-HPM to Lane-Emden-type differential 

equations, while Morales-Delgado et al. (2016) analysed fractional partial differential equations using combined Laplace 

transform and homotopy methods. The MLTHAM shows promise for solving complex differential equations in hybrid 

MHD nanofluid flows. The effectiveness of this approach is supported by studies on the MHD stagnation point flow 

(Rehman et al., 2024) and three-dimensional MHD non-axisymmetric Homann stagnation point flow of hybrid 

nanofluids (Zainal et al., 2020). 
 

Despite advances in the methods for solving nonlinear differential equations, significant limitations exist when analysing 

coupled nonlinear magnetohydrodynamic (MHD) systems with hybrid nanofluids. Traditional approaches often fail to 

provide accurate or efficient solutions owing to nonlinearities and magnetic-field effects. A robust semi-analytical 

technique is required to handle hybrid nanofluid flows under MHD effects. In this study, a Modified Laplace Transform 

Homotopy Asymptotic Method (MLTHAM) was used for hybrid nanofluid MHD flows. Hybrid nanofluids, known for 

superior thermophysical properties, are widely used in engineering systems involving heat transfer and 

magnetohydrodynamic effects. These fluids, which contain nanoparticles in a base fluid, require precise analytical 

techniques. Current homotopy methods face convergence issues, leading to the introduction of MLTHAM, which 

combines the Laplace transform with the homotopy asymptotic method to improve the solution accuracy in MHD hybrid 

nanofluid systems. This study aims to develop and implement a Modified Laplace Trans-form Homotopy Asymptotic 

Method (MLTHAM) to solve nonlinear differential equations that arise in both steady and unsteady 

magnetohydrodynamic (MHD) hybrid nanofluid flow problems. The specific objectives of this study were as follows: 
 

1. Formulate the modified Laplace transform homotopy asymptotic method (MLTHAM) approach, 

2. Construct appropriate deformation equations, and obtain an efficient approximate analytical solutions using 

MLTHAM, 

3. Apply the MLTHAM to solve linear and nonlinear differential equations, and 

4. Compare the performance of MLTHAM with existing methods in terms of convergence, accuracy, and 

computational efficiency. 
 

An accurate analytical method is crucial for solving complex nonlinear differential equations in fluid flow. The proposed 

MLTHAM introduces an efficient semi-analytical technique to enhance nonlinear MHD system analysis. This study 

advances mathematical tools for solving complex differential equations and provides insights into hybrid nanofluid 

behaviour, aiding the development of cooling and heating systems. The demand for efficient heat transfer systems 

requires enhanced models for hybrid nanofluid flows under the magnetic influence. Through MLTHAM, this study 

bridges the mathematical theory and engineering applications, providing a tool for researchers in fluid dynamics and 

thermos-physics. 
 

2. Literature Review 
Classical analytical techniques like perturbation method, variational iteration, and Adomian decomposition have limited 

effectiveness in solving strongly nonlinear differential systems. These approaches rely on linearisation, making them 

unsuitable for complex problems with wide parameter variations (He, 2006). To overcome these limitations, advanced 

asymptotic methods have been developed. Homotopy-based methods, including the Homotopy Perturbation Method 

(HPM) and the Variational Iteration Method (VIM), can solve nonlinear differential equations without linearisation. The 

Homotopy Analysis Method (HAM) and Optimal Homotopy Asymptotic Method (OHAM) enhance convergence, but 

require cumbersome auxiliary function selection (Barari et al., 2008). The optimum Adonian decomposition method 

addresses this problem by introducing a convergence control parameter, (Turkyilmazoglu, 2017). 
 

Laplace-based methods effectively manage initial conditions and physical constraints in hybrid nanofluid systems. The 

Laplace transform approach solves partial differential equations governing time-dependent mixed convective flow in 

porous media (Ali et al., 2025), allowing the analysis of radiation, magnetic effects, and nanoparticle parameters on 

velocity and thermal distribution. Studies by Gohar et al. (2022) and Mahabaleshwar et al. (2023) have demonstrated 

mathematical techniques for analysing complex fluid flows in Darcy-Forchheimer flows and hybrid nanofluids. Gohar et 

al. (2022) used homotopy analysis to study Casson hybrid nanofluid flow over curved stretching surfaces, showing that 

iron ferrite and carbon nanotubes effectively controlled coolant levels. Their findings revealed that higher Casson 

parameter values reduced the hybrid nanofluid motion, highlighting the importance of non-Newtonian fluid behaviour. 
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Recent studies on MHD hybrid nanofluids have revealed complex boundary-layer phenomena and thermal gradients. 

Rafique et al. (2024) used optimal OHAM with convergence control parameters to solve nonlinear ordinary differential 

equations for spinning Powell-Eyring nanofluids in a 3D MHD boundary layer, analyzing physical effects on 

concentration and temperature profiles. The Keller box finite difference scheme studied Powell-Eyring hybrid nanofluid 

flow over porous stretching surfaces (Aziz et al., 2020), while implicit finite difference analyzed Eyring-Powell 

nanofluid with carbon nanotubes and iron oxide nanoparticles (Patil & Shankar, 2023). Ahmed and Ishaq (2023) found 

multiple solutions in MHD stagnation flow models with hybrid nanofluids and chemical reactions, emphasizing stability 

analysis. This aligns with studies observing dual solutions in the MHD flows of hybrid nanofluids over 

stretching/shrinking surfaces (Junoh et al., 2019; Saif et al., 2021; Zainal et al., 2020). 

 

MLTHAM uses Laplace transforms to convert differential equations into algebraic forms (Yavuz & Ozdemir, 2018; Yin 

et al., 2015), incorporating Adomian’s and He’s polynomials for nonlinear terms (Kumar Mishra & Nagar, 2012; Yin et 

al., 2015). This technique uses an auxiliary parameter to control the convergence region of infinite-series solutions. 

Various modifications combine Laplace transforms with homotopy methods, including Laplace homotopy perturbation 

method (Yavuz & Ozdemir, 2018), He-Laplace method (Kumar Mishra & Nagar, 2012), and fractional expansion with 

residual power series method (El-Ajou, 2021). 

 

Homotopy asymptotic method combined with Laplace transform effectively solves various differential equations, 

including fractional-order systems (Odibat & Kumar, 2019; Saratha et al., 2020). Similar hybrid approaches include 

HPSTM for nonlinear fractional gas dynamic equations (Singh et al., 2013) and LFHPSTM and LFHASTM for local 

fractional Laplace equations on Cantor sets (Dubey et al., 2021). 
 

3. Methodology 
This chapter introduces some preliminaries and thoroughly presents the Modified Laplace Homotopy Asymptotic 

Method approach. 
 

3.1 Preliminaries 
In this section, we present key standard definitions and properties adopted from previous works. These preliminary 

notions provide the necessary framework for the development of the main arguments and serve as the basis for results 

and discussions that follow. 

 

Definition 1: Partial Differential Equation [C. Evans] 
An expression of the form 

 

 

 

is called a k-th order partial differential equation, where 

 

 

Definition 2: Linear Differential Equation [C. Evans] 
The partial differential equation (1) is called linear if it has the form 

 

 

for given functions aα (|α| ≤ k), f. This linear PDE is homogeneous if f ≡ 0. 

Definition 3: Semilinear Differential Equation [C. Evans] 
The PDE (1) is semilinear if it has the form 
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Definition 4: Quasilinear Differential Equation [C. Evans] 
The PDE (1) is quasilinear if it has the form 

 

 

Definition 5: Nonlinear Differential Equation [C. Evans] 
The PDE (1) is fully nonlinear if it depends nonlinearly upon the highest order derivatives. 

 

Definition 6: Laplace TransformThe Laplace transform of a continuous function f(x) is denoted Ls[f(x)] = F (s), 

and defined by 

                          
 

Definition 7: Inverse Laplace Transform 
Suppose that F (s) is the Laplace transform of f(x), we define f(x) as the inverse Laplace transform of F (s). Then we 

write: 

 

 

The integral form of the inverse Laplace transform is defined by: 

         

where f(x) is a continuous function on the interval x ∈ [0, ∞). 

Property 1: Linearity 
The Laplace transform, and its inverse are linear. That is, if c1 and c2 are constants and f(x) and g(x) are continuous 

functions, then 

                 L(c1f(x) + c2g(x)) = c1Lf(x) + c2Lg(x) (5) 
 

If F1, F2, …, Fm are Laplace transforms and c1, c2, …, cm are constants, then 

L
−1

(cmFm) = cmL
−1

(Fm) (6) 

 

L
−1

(c1F1 + c2F2 + … + cmFm) = c1L
−1

(F1) + c2L
−1

(F2) + … + cmL
−1

(Fm) (7) 

 
Property 2: Laplace Transform of Derivatives 
Let f(x) be a continuous function and F (s) the Laplace transform of f(x), the Laplace transform of the nth derivative of 

f(x) is given by 
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where the power ”(n)” represent the nth derivative of f(x). 

3.2 Basic Idea of the Modified Laplace Transform Homotopy Asymptotic Method (MLTHAM) 
Traditionally, the generalised homotopy method was idealised by Liao [S. J. Liao 2003] by constructing the so-called 

zero-order deformation equation 

            
 

 

H (x, s) ̸= 0 is an auxiliary function, u0(x, s) is an initial guess of u(x, s), ϕ(x, s; p) is an unknown function and L an 

auxiliary linear operator has the property: 

          

We define the nonlinear operator N as 

          

As the auxiliary parameter p changes from 0 to 1, we have respectively 

ϕ(x, s; 0) = u0(x, s), ϕ(x, s; 1) = u(x, s). (12) 

 

This implies that as p varies from 0 to 1, the solution varies from the initial guess 

ϕ(x, s; 0) = u0(x, s) to ϕ(x, s; 1) = u(x, s).   (13) 

 

Expanding ϕ(x, s; p) in Taylor series with respect to p, we obtain 

         
Where 

                      

The auxiliary parameter p, the linear operator L, initial guess u0, and auxiliary function H(x, s) are carefully chosen so 

that the series above converges at p = 1. Thus, we have 

                       

As h = −1, and H(x, s) = 1, equation (9) becomes 

 

 

where p [0, 1] is the embedding parameter, 

ˆ 

is a non-zero auxiliary parameter, 

 

h  
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Equation (17) is a simplified form of the zeroth-order deformation equation used in the Homotopy Analysis Method 

(HAM). 

3.3 Modified Laplace Transform Homotopy Asymptotic Method (MLTHAM) 
We introduce the modified Laplace transform homotopy asymptotic method (MLTHAM) by considering the nonlinear 

differential equation: 

              
where L and N are the linear and nonlinear operators, g(x) is a known function, x denotes an independent variable, u(x) is 

the to be determined unknown function, and B is a boundary operator. 

 

First, we apply the Laplace transform on (18): 

  

 

 

Next, applying definition (6) and property (2), equation (19) becomes: 

 

 

where, Lx{u(x)} = U(s) is the Laplace transform of u(x), u(n)(0) denotes the nth derivative of u(x) evaluated at x = 0, and 

s is a complex or real parameter, called the frequency parameter.  
Equation (20) can be written in a more compact form as: 

          
Simplifying the last relation, we obtain 

                                                                

with the boundary condition uk(0) = ck.     

Taking the inverse Laplace transform of the resulting equation in (22), 

  
Thus, 

                                           
where the initial guess u0(x) is obtained as: 
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The higher order deformation equation is given by: 

 

Alternatively, we can derive the higher-order deformation equation from the zero-order deformation equation (17). 

Assume that ϕ(x, s; p) is analytic in p (equation 14). 

Differentiating Eq. (17) m times with respect to p: 

 

 

Evaluate Eq. (27) at p = 0, using the identity: 

    

  

The nonlinear operator is expanded as: 

           

where Nm(x, s) is defined via the so-called mth order homotopy derivative: 

       

The m-th order deformation equation is given by: 

       
Where 

        
and Rm(x) is the residual function obtained from the nonlinear operator N and the previous approximations: 

         

Each term um(x) in Eq. (31) is obtained by applying the inverse Laplace transform of the linear operator L to the right-

hand side. 

4. Applications 
The first application considers a second-order linear homogeneous ordinary differential equation characterised by 

variable coefficients. This equation represents a fundamental yet complex case that challenges the robustness of the 

method in addressing coefficient variability. Analytical approaches often encounter difficulties with such equations 

because of the complexity inherent in the variable nature of the coefficients. The second case investigates the Blasius 

boundary layer equation, a canonical nonlinear third-order ordinary differential equation arising in the boundary layer 

theory for steady two-dimensional laminar flow over a flat plate. Owing to its nonlinearity and boundary condition at 

infinity, the Blasius equation poses significant challenges for classical analytical methods. The implementation of 

MLTHAM in this context not only addresses the boundary value problem effectively but also demonstrates the capability 
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of the method to yield accurate approximations with rapid convergence. However, MLTHAM provides a viable 

alternative by constructing a convergent analytical series solution that maintains physical interpretability and reduces the 

computational complexity. 

 

4.1 Application 1: Second-order linear homogeneous ordinary differential equation (ODE) 

with variable coefficients 
Consider the following differential equation arising in quantum physics, Dass (2007): 

 

 

Taking the Laplace transform of Eq. (34), and applying Eq. (22) with the initial conditions, we obtain: 

                 

By Eq. (25), the zeroth-order solution: 

                  

The first, second, and third order solutions are obtained from the deformation Eq. (26) respectively as: 

 

 

 

 

 
By adding Eqs. (36), (37), (38), and (39), together, the third-order approximate solution is obtained as: 

 

 

 

4.2 Application 2: The Blasius Equation 
Consider the two-dimensional laminar viscous flow past a semi-infinite plate, governed by a nonlinear third-order 

ordinary differential equation, Marinca and Herisanu (2014): 

                
subject to the boundary conditions: 
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The prime in the above equations denotes the derivative with respect to the similarity variable η. The Blasius equation 

(41-42) is a special case of the Falkner-Skan equation [Falkner and Skan, 1931]: 

 

 

 

propounded by Falkner and Skan in 1931. The Blasius equation is the mother of all boundary-layer equations in fluid 

mechanics. We will solve equations (41-42) using the MLTHAM approach. 

First, we apply definition (6) and properties (2), (1), Eqs. (41) with boundary conditions 

(42) gives (45), 

where C1 is an unknown constant to be determined. The initial guess f0(η) is obtained as the zeroth-order solution (46): 

      

                                         

The first-order deformation equation becomes: 

                         
Therefore, 

                  
subjected to the boundary conditions: 
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5. Results and Discussion 

In this study, the Modified Laplace Transform Homotopy Asymptotic Method (MLTHAM) was successfully applied to 

obtain analytical approximations for both linear and nonlinear differential equations that describe both steady and 

unsteady magnetohydrodynamic (MHD) hybrid nanofluid flows. Two key applications are showcased to illustrate the 

robustness and applicability of the method. The first application involves a second-order linear homogeneous ordinary 

differential equation with variable coefficients. The result, f(0.2) = 0.979933, shows excellent agreement with the 

previously established literature, where f(0.2) = 0.97993266, (Dass, 2007). This minor difference of 3.4 × 10
−7

 clearly 

demonstrates the accuracy and reliability of MLTHAM for linear variable-coefficient problems and confirms the 

convergence properties of the series solution up to the third- order approximation. The second application addressed the 

classical Blasius boundary layer equation, a nonlinear third-order ordinary differential equation that describes the steady 

laminar boundary layer over a flat plate. The MLTHAM solution approximates f
′′
(0) = 0.332304, which is close to the 

benchmark results in the literature, where f
′′
(0) ≈ 0.3320574, (Marinca and Herisanu, 2014) indicating that the method 

accurately captures the velocity gradient at the wall. This agreement with known numerical findings confirms 

MLTHAM’s capability of the MLTHAM to handle nonlinear boundary-value problems with complex asymptotic 

conditions at infinity. In summary, the convergence, accuracy, and physical fidelity of the MLTHAM solutions in all 

applications establish it as a powerful analytical tool for nonlinear differential equations. The numerical consistency of 
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the obtained results with established benchmarks across diverse physical regimes supports their broader adoption in fluid 

dynamics, heat transfer, and applied mathematics research. 
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