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I. INTRODUCTION 
IN recent years, Unmanned Aerial Vehicles (UAVs) such as quadrotors are increasingly becoming an important part of 

scientific researches in academic, commercial, government, security and technological platforms [1]. The increasing 

popularity of quadrotors is due to their hovering capacity, low weight, low cost, maneuverability, small size, and vertical 

take-off & landing (VTOL) [2]. 
 

The dynamics of quadrotors are complex, nonlinear, underactuated multi-input-multi-output (MIMO), time varying, 

uncertain and affected by external disturbances. These make the control of quadrotors difficult and challenging. As a 

result, many researchers have come up with different control strategies to achieve stability and excellent tracking 

performances. 
 

A nonsingular terminal SMC was proposed in [3] for trajectory tracking control of quadrotor taking into account the 

model uncertainties and external disturbances. In [4], a robust adaptive nonsingular fast terminal SMC was designed to 

control the attitude and the altitude of a quadrotor with parametric uncertainties and disturbances. In [5], an adaptive 

back-stepping fast terminal SMC was implemented for quadrotor attitude and position tracking control. An adaptive 

fractional SMC was implemented to take care of time varying load of a quadrotor [6]. A fractional order SMC has been 

designed for a quadrotor with constrained states [7]. A quadrotor controller has been constructed through fractional order 

SMC for a vision-based tracking of a moving vehicle [8]. In [9], a trajectory tracking controller based on fractional order 

SMC is presented for a quadrotor with time varying complex disturbances. A SMC was designed for a quadrotor with 
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Moreover, a radial basis function neural network (RBFNN) is proposed to approximate the uncertain nonlinear 

function and the input gains. For the underactuated subsystem, a back-stepping fast-terminal sliding mode control 
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time varying mass in order to achieve robust attitude tracking [10]. In [11], a SMC with modified super-twisting 

algorithm has been implemented for attitude control of 3 degree of freedom quadrotor. A sliding mode disturbance 

observer was designed for the suppression of external disturbances in [12], [13], [14]. The Coriolis terms and 

disturbances were estimated and compensated by the disturbance observer for aggressive maneuvering of quadrotor. A 

flight tracking controller based on disturbance observer has been suggested for a quadrotor and its effectiveness was 

validated by experiment [15]. In [16], a fault tolerant sliding mode disturbance observer was designed for a quadrotor 

subjected to actuator failure. An adaptive fault tolerant controller with disturbances observer has been applied to 

quadrotor in the presence of parametric uncertainties and external disturbances [17]. In [18], an adaptive state feedback 

fault tolerant controller is designed for a quadrotor with actuator failure. A sliding mode controller has been designed 

based on flat-quadrotor dynamics to solve the trajectory tracking issue of a quadrotor subjected to disturbances [19]. In 

[20], a novel robust proportional integral derivative (PID) controller was proposed for trajectory tracking of quadrotor 

and power reduction. A robust active disturbance rejection control has been presented in [21], [22] to control the attitude 

of a quadrotor. In [23], an active disturbance rejection control based on grey wolf optimization has been developed for 

quadrotor trajectory tracking. A double closed loop active disturbance rejection control has been designed in [24] to deal 

with complex nonlinearities, external disturbances and uncertainties. In [21], a composite active disturbance mitigation-

based attitude controller was designed for a quadrotor under unknown disturbances. In [25], a robust back-stepping 

controller has been studied in order to control a quadrotor with time delay. A trajectory tracking controller for a 

quadrotor with slung load was presented in [26]. In [27], a nonlinear geometric control method was implemented in order 

to control a quadrotor with a point mass payload suspended by a string. In [28], a passivity-based control was designed to 

attenuate the swing angle of slung load transported by a quadrotor. 

 

The model of a quadrotor was identified in [29] and a robust 𝐻∞ attitude controller was developed to guarantee 

tracking performance and disturbance rejection. A sigmoid tracking differentiator together with robust back-stepping 

controller was used to obtain the tracking control of a quadrotor under external disturbances [30]. A fast terminal SMC 

with integral error has been used to solve flight problems of quadrotor UAV with varying uncertainties [31]. An adaptive 

back-stepping control based on state observer has been studied in [32] for path tracking of a quadrotor. In [33], a back-

stepping method was combined with SMC to control the orientation and the displacement of a quadrotor in the presence 

of unknown uncertainties. Extended state observer is combined with backstepping based SMC in order control a small 

size UAV [34]. 

 

The universal approximation property of NN and fuzzy logic systems (FLS) result in their wider applications in 

adaptive control [35]. In [1], a NN was used to tune the parameters of SMC for each subsystem of a quadrotor. A robust 

neuroadaptive controller has been implemented for a quadrotor to track moving objects [36]. In [37], a RBFNNs together 

with proportional-derivative SMC was proposed to control the position subsystem of a quadrotor. In [38], an adaptive 

RBFNN SMC is used to dealt with uncertain nonlinearities and achieve robust trajectory tracking of the quadrotor. In 

[39], a quadrotor with actuator faults was investigated and RBFNN based SMC fault tolerant controller was developed to 

guarantee that the states converge to the required responses. In [40], a Fuzzy based attitude controller was developed for 

the hovering control of a quadrotor. In [41], a type-2 fuzzy dynamic surface control of multiple quadrotors has been 

studied. The unmodelled dynamics of a quadrotor have been identified based on NN and a back-stepping controller was 

employed for trajectory tracking [42]. An adaptive RBFNN integral SMC is applied to control the position of a quadrotor 

with uncertainties [43]. 

 

A faster convergence, quick recovery from external disturbances, and excellent tracking performance can be 

obtained by finite time control schemes. a finite time ADRC has been designed for attitude tracking of quadrotor under 

input-saturation [44]. A finite time hybrid controller has been designed for accurate trajectory tracking of quadrotor [45]. 

An adaptive multivariable controller based on finite time stability has been proposed for attitude control of quadrotor 

with external disturbances [46]. A finite time-based integral SMC has been designed for a quadrotor with parametric 

uncertainties [47]. 

 

Inspired by the aforesaid discussion, a finite time control schemes are proposed to track the attitude and position of 

a quadrotor in the presence of parametric uncertainties and external disturbances. A RBFNN based fractional order 

integral SMC (NN-FISMC) is designed for the finite time control of the fully-actuated subsystem. Moreover, a 

backstepping based fast terminal SMC with neural disturbance estimator (NN-BFSMC) is developed for the tracking of 

the under-actuated subsystem (position subsystem) and generate the desired signals. The main contributions of this paper 

are summarized as follows: 

1. The finite time control scheme is employed to ensure faster convergence and trajectory tracking. 

2. The NN-FISMC is proposed to improve the robustness of the control system to uncertainties and external 

disturbances. Contrary to the fractional order SMC in [7], [6], [8], [9], the NN-FISMC in this paper has integral 

error term to eliminate the steady state error, finite time convergence to the reference signals and completely 

independent of the system dynamics. 
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3. In [37], [38], [42], [43], [43], [39], a RBFNN was employed to approximate only the uncertain nonlinear 

functions while input gains were assumed to be free from uncertainties. This reduced extra complications in the 

control design. However, in practical applications, the assumption can lead to inaccurate control. In this work, 

both the uncertain nonlinear functions and the input gains of the quadrotor fully-actuated subsystem are 

estimated by RBFNN in order ensure robust performances. 

4. In [47], 13 adaptation laws have been used to estimate all the uncertain parameters of the fully-actuated 

subsystem of the quadrotor. In this paper, 8 RBFNNs are used to estimate the 4 uncertain nonlinear functions 

and the four input gains of the quadrotor fully-actuated subsystem. Hence, the number of computations is 

reduced. 

5. In [45], a back-stepping method was developed to control the horizontal position subsystem of a quadrotor. In 

[48], an improved control action was achieved by combining back-stepping, fast terminal SMC, and an adaptive 

law which estimate the upper bounds of the external disturbances. Nevertheless, the adaptive estimation is more 

effective for constant disturbances. In this work, a NN-BFTSMC is proposed to stabilized the position 

subsystem in short time. The RBFNN can accurately approximate any complex time varying disturbances unlike 

the adaptive methods. 
 

The rest of the paper is arranged as follows: The mathematical model is given in Section II. The finite time controller is 

designed in Section III. The simulation results are presented in Section IV. In Section V, the conclusions are drawn. 
 

II. DYNAMIC MODELLING 
This paper considers a rigid cross-frame and symmetric quadrotor subjected to aerodynamic drag, parametric 

uncertainties and wind gust. The six degrees of freedom of the quadrotor is determined by the body fixed frame whose 

origin coincides with the center of gravity of the quadrotor and the fixed earth frame. The position of the center of gravity 

is represented by the vector 휁 = [𝑥, 𝑦, 𝑧] in the fixed earth frame, while the attitude of the quadrotor is represented by 

휂 = [𝜙, 휃, 𝜓] where 𝜙  is the roll angle, 휃 is the pitch angle, and 𝜓 is the yaw angle. The dynamic equations of the 

quadrotor can be expressed in Newton-Euler form as [49]: 
 

�̈�  =
1

𝐼𝑥
[−𝐾𝜙�̇�

2 + (𝐼𝑦 − 𝐼𝑧)�̇�휃̇ − 𝐽𝑟𝜔𝑟휃̇] +
𝑙𝑢2
𝐼𝑥
+ 𝛿𝜙 (1)

휃̈  =
1

𝐼𝑦
[−𝐾𝜃휃̇

2 + (𝐼𝑧 − 𝐼𝑥)�̇��̇� + 𝐽𝑟𝜔𝑟휃̇] +
𝑙

𝐼𝑦𝑢3
+ 𝛿𝜃 (2)

�̈�  =
1

𝐼𝑥
[−𝐾𝜓�̇�

2 + (𝐼𝑥 − 𝐼𝑦)�̇�휃̇] +
𝑙

𝐼𝑧
𝑢4 + 𝛿𝜙 (3)

�̈�  = −
𝐾𝑧
𝑚
�̇� − 𝑔 +

1

𝑚
(cos 𝜙cos 휃)𝑢1 + 𝛿𝑧 (4)

�̈�  = −
𝐾𝑦

𝑚
�̇� + (cos 𝜙sin 휃sin 𝜓 + sin 𝜙cos 𝜓)

𝑢1
𝑚
+ 𝛿𝑦 (5)

�̈�  = −
𝐾𝑥
𝑚
�̇� + (cos 𝜙sin 휃cos 𝜓 + sin 𝜙sin 𝜓)

𝑢1
𝑚
+ 𝛿𝑥 (6)

 

where m is the mass of the quadrotor, 𝑔 is the acceleration due to gravity, 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 are the inertias, 𝐾𝑥 , 𝐾𝑦 , 𝐾𝑧 , 𝐾𝜙, 𝐾𝜃  and 

𝐾𝜓  are the drag coefficients, 𝛿𝜙, 𝛿𝜃 , 𝛿𝜓, 𝛿𝑥, 𝛿𝑦, 𝛿𝑧  denote the external disturbances, parametric uncertainties and 

unmodeled dynamics, 𝜔𝑟 = (𝜔4 +𝜔4 − 𝜔2 − 𝜔1) is the quadrotor relative speed, 𝜔1 −𝜔4 are the rotor speeds related 

by 

[

𝑢1
𝑢2
𝑢3
𝑢4

] =

[
 
 
 
𝐾𝑝 𝐾𝑝 𝐾𝑝 𝐾𝑝
−𝐾𝑝 0 −𝐾𝑝 0

0 −𝐾𝑝 0 −𝐾𝑝
𝐶𝑑 𝐶𝑑 𝐶𝑑 𝐶𝑑 ]

 
 
 

[
 
 
 
 
𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2]
 
 
 
 

 

𝑢1  is the altitude control signal, 𝑢2, 𝑢3  and 𝑢4  are the roll, pitch and yaw inputs respectively, 𝐾𝑝  and 𝐶𝑑  are the 

aerodynamic force and moment coefficients respectively. 

The fully actuated subsystem of the quadrotor is extracted from (1)-(6) as 

{
Υ1 = Υ2
Υ2 = 𝑓Υ + 𝑏Υ𝑢 + 𝛿Υ

(7) 

where Υ1 = [𝜙 휃 𝜓]𝑇 , Υ2 = [�̇� 휃̇ �̇�]𝑇 , 𝛿Υ = [𝛿𝜙 𝛿𝜃 𝛿𝜓]𝑇, 𝑢 = [𝑢2 𝑢3 𝑢4]𝑇 
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𝑓Υ =

[
 
 
 
 
 
 
1

𝐼𝑥
[−𝐾𝑎𝜙�̇�

2 + (𝐼𝑦 − 𝐼𝑧)�̇�휃̇
2 − 𝐽𝑟Ω𝑟휃̇]

1

𝐼𝑦
[−𝐾𝑎𝜃휃̇

2 + (𝐼𝑧 − 𝐼𝑥)�̇��̇� + 𝐽𝑟Ω𝑟휃̇]

1

𝐼𝑥
[−𝐾𝑎𝜓�̇�

2 + (𝐼𝑥 − 𝐼𝑦)�̇�휃̇] ]
 
 
 
 
 
 

𝑏Υ =

[
 
 
 
 
 
 
𝑙

𝐼𝑥
0 0

0
𝑙

𝐼𝑦
0

0 0
𝑙

𝐼𝑧]
 
 
 
 
 
 

 

The under-actuated subsystem is given by 

{
Ω1 = Ω2
Ω2 = 𝑓Ω + 𝑏Ω𝑣 + 𝛿Ω

(8) 

where Ω1 = [𝑧 𝑦 𝑥]𝑇 , Ω2 = [�̇� �̇� �̇�]𝑇 , 𝛿Ω = [𝛿𝑧 𝛿𝑦 𝛿𝑥]𝑇, 𝑣 = [𝑢1 𝑢𝑦 𝑢𝑥]𝑇 

[
𝑢𝑥
𝑢𝑦
] = [

(cos 𝜙sin 휃cos 𝜓 + sin 𝜙sin 𝜓)
(cos 𝜙sin 휃sin 𝜓 − sin 𝜙cos 𝜓)

] 

𝑓Ω =

[
 
 
 
 
 
𝐾𝑎𝑥
𝑚

�̇�

𝐾𝑎𝑦

𝑚
�̇�

𝐾𝑎𝑧
𝑚
�̇� − 𝑔]

 
 
 
 
 

; 𝑏Ω = [

(cos 𝜙cos 휃)

𝑚
0 0

0 𝑢1/𝑚 0
0 0 𝑢1/𝑚

] 

Then, the desired pitch and roll angles can be obtained as 

{

𝜙𝑑 = arcsin (𝑢𝑥sin 𝜓 − 𝑢𝑦cos 𝜓)

휃𝑑 = arcsin (
𝑢𝑥cos 𝜓 + 𝑢𝑦sin 𝜓

cos 𝜙𝑑
)

(9) 

III. CONTROL DESIGN 
In this section, a RBFNN based finite time controllers are designed for the quadrotor subjected to external disturbances 

and model uncertainties to track the reference trajectories. The aim is to derive the state variables [𝜙휃𝜓𝑧𝑦𝑥]𝑇 to follow 

the desired state values [𝜙𝑑 휃𝑑 𝜓𝑑 𝑧𝑑 𝑦𝑑 𝑥𝑑]
𝑇. The control architecture is shown in Fig. 1. 

 

Lemma 1: [50] For any real number 𝑎 > 0, 𝑏 > 0 if there exists a continuous positive definite function meeting the 

inequality, 

�̇� ≤ −𝑎𝐿𝑚 + 𝑏 (10) 

the equilibrium point is semi-globally finite time stable 

Definition 1: [51] The definition of fractional order derivatives according to Caputo is given by 

𝐷𝑡
𝜎𝑓(𝑡) =

1

Γ(𝑛 − 𝜎)
∫  
𝑡

0

 
𝑓𝑛(𝜏)

(𝑡 − 𝜏)𝜎−𝑛+1
𝑑𝜏 (11) 
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where 𝑛 is an integer so that 𝑛 − 1 < 𝜎 < 𝑛 and Γ(.)𝑖𝑠𝑎 Gamma function 

Assumption 1: The disturbances 𝛿𝑖(𝑖 = 𝜙휃𝜓𝑧𝑦𝑥) are continuously differentiable and uniformly bounded by unknown 

bounds 𝛿𝑏𝑖 
𝛿𝑖 ≤ 𝛿𝑏𝑖 (12) 

Assumption 2: The desired values [𝜙𝑑휃𝑑𝜓𝑑𝑧𝑑𝑦𝑑𝑥𝑑]
𝑇 are Lipschitz continuous. 

A. RBFNN Approximation 
RBFNN can approximate any continuous nonlinear function in a small compact set. The RBFNN has a simple structure 

and does not need complex calculations. In addition, it has a superior generalization capability than the multiple layers 

neural network. 

 

The RBFNN consists of three layers: the input, the hidden and the output layers. The hidden layer activation function is 

usually a Gaussian function expressed as 

 

휁𝑗(𝑋𝑖) = exp (−
∥∥𝑋𝑖 − 𝑐𝑗∥∥

2

𝛾𝑗
) (13) 

where 𝑋𝑖 ∈ 𝑅
𝑛 is the input vector, 𝛾𝑗 is the width of the Gaussian function, 𝑐𝑗 is the center of the receptive field. If there 

exist an optimal weight vector, W, and 𝑃(𝑋𝑖) is the RBFNN output, then 

𝑃(𝑋𝑖) = 𝑉
𝑇휁(𝑋𝑖) + 휀𝑃 (14) 

휀𝑃 ≤ 휀𝑃
∗       (15) 

 where 휀𝑃 is the approximation error satisfying 휀𝑃 ≤ 휀𝑃
∗ , with 휀𝑃

∗  being the maximum of the RBFNN approximation error. 

 

 
 

Fig. 1. Control architecture 
 

B. NN-FISMC controller design 
The aim of this section is to design the controller v for the underactuated subsystem to guarantee the attitude tracking 

error 𝑒Υ converges to zero asymptotically. 

 

Let Υ𝑑 = [𝜙𝑑 휃𝑑 𝜓𝑑]
𝑇 be the desired attitude trajectory. The attitude tracking errors are thus 

𝑒Υ = Υ1 − Υ𝑑;  �̇�Υ = Υ̇1 − Υ̇𝑑;  �̈�Υ = Υ̇2 − Ϋ𝑑 

The fractional order sliding mode surfaces is given by: 

𝑆 = �̇�Υ + 𝜆∫  
𝑇𝑓

𝑡0

  𝑒Υ𝑑𝑡 + Λ𝐷
𝜎−1𝑒Υ (16) 
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Using the RBFNN to approximate 𝑓Υ + 𝛿Υ, the time derivatives of the surface is 

�̇� = Ϋ − Ϋ𝑑 + 𝜆�̇�Υ + Λ𝐷
𝜎𝑒Υ                                                                                                      (17) 

 

The error trajectories reached the sliding surfaces based on 𝑆 = �̇� = 0 and the reaching law chosen in this study is 

𝑢𝑟 = −휂𝑆 ∈ ℛ
3×1 (18) 

 

where 𝜆 ∈ ℛ3×3 > 0, Λ ∈ ℛ3×3 > 0, 휂 ∈ ℛ3×3 > 0 are design diagonal matrices. The control inputs for the entire four 

degree of freedom required to reach and stay on the respective sliding surfaces in finite time are: 

𝑢 = �̂�(𝑥)−1[−�̂�(𝑥) + Ϋ𝑑 − 𝜆�̇� − Λ𝐷
𝜎𝑒 − 휂𝑆] (19) 

where �̂� and �̂� are the estimates of the unknown functions 𝐹 and 𝑔 respectively. 

Remark 1: When �̂� ⟶ 0, the control law (19) is undefined. Therefore, we assume |�̂�| ≥ 𝑞 > 0. where 𝑞 is a small 

known lower bound to keep �̂�(𝑥) away from zero [52]. 

Adding (�̂�(𝑥)𝑢 − �̂�(𝑥)𝑢) and substituting (19) into (17) yield 

 

�̇� = 𝐹(𝑥) +
�̂�(𝑥)

�̂�(𝑥)−1
[−�̂�(𝑥) + Ϋ𝑑 − 𝜆�̇� − Λ𝐷

𝜎𝑒 − 휂𝑆]

 +[𝑔(𝑥) − �̂�(𝑥)]𝑢 − Ϋ𝑑 + 𝜆�̇� + Λ𝐷
𝜎𝑒

                                               (20) 

 

𝑉 =

[
 
 
 
 
𝑉𝑧
⊤

𝑉𝜙
⊤

𝑉𝜃
⊤

𝑉𝜓
⊤
]
 
 
 
 

;𝑊 =

[
 
 
 
 
𝑊𝑧

𝑇 0 0 0

0 𝑊𝜙
𝑇 0 0

0 0 𝑊𝜃
𝑇 0

0 0 0 𝑊𝜓
𝑇
]
 
 
 
 

휁(𝑋𝑖) =

[
 
 
 
휁𝑧 0 0 0
0 휁𝜙 0 0

0 0 휁𝜃 0
0 0 0 휁𝜓]

 
 
 

; 휀𝑓 = [

휀𝑓𝑧
휀𝑓𝜙
휀𝑓𝜃
휀𝑓𝜓

]

휀𝑔 =

[
 
 
 
 
휀𝑔𝑧 0 0 0

0 휀𝑔𝜙 0 0

0 0 휀𝑔𝜃 0

0 0 0 휀𝑔𝜓]
 
 
 
 

 

The adaptive RBFNN is 

�̂�(𝑋𝑖) = �̂�𝑇휁(𝑋𝑖) (21)

�̂�(𝑋𝑖) = �̂�
𝑇휁(𝑋𝑖) (22)

 

The RBFNN function estimation errors are as follows: 

�̃�(𝑋𝑖) = �̃�
𝑇휁(𝑋𝑖) + 휀𝑓 (23)

�̃�(𝑋𝑖) = �̃�
𝑇휁(𝑋𝑖) + 휀𝑔 (24)

 

where �̃� = 𝑉 − �̂� and �̃� = 𝑊 − �̂� are RBFNN estimation errors. Substituting (23) and (24) into (17) gives 

�̇� = �̃�𝑇휁(𝑋𝑖) + 휀𝑓 + [�̃�
𝑇휁(𝑋𝑖) + 휀𝑔]𝑢 − 휂𝑆 (25) 

Theorem 2: Consider the open-loop system (1)-(6), the control input (19), with NN estimation algorithms given as 

{
�̇̂� = 𝑆𝑇𝜉1휁(𝑋) − 𝜇𝜉1�̂�

�̇̂� = 𝑆𝑇𝜉2휁(𝑋)𝑢 − 𝜇𝜉2�̂�
(26) 
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where 𝜉1 = 𝜉1
𝑇 > 0 ∈ ℛ3×3, 𝜉2 = 𝜉2

𝑇 > 0 ∈ ℛ3×3 are tuning matrices, 𝜇 > 0 is a small constant. Therefore, 𝑆, �̃�, and �̃� 

are ultimately uniformly semi-globally bounded in finite time near the compact set Ω𝑞1 ≡ {𝑞1: ∥∥𝑞1∥∥ ≤ 𝑐𝑞1}, where 𝑐𝑞1 >

0 is a small constant. 

Proof 1: To begin with, the Lyapunov function candidate is chosen as 

𝐿1 =
1

2
𝑆𝑇𝑆 +

1

2
�̃�𝑇𝜉1

−1�̃� +
1

2
�̃�𝑇𝜉2

−1�̃� (27) 

 

Differentiating (27) with respect to time and substituting �̇� = �̇� = 0, we have 

�̇�1 = 𝑆𝑇�̇� − �̃�𝑇𝜉1
−1�̇̂� − �̃�𝑇𝜉2

−1�̇̂� (28) 

Substituting the adaptation algorithms (26) into (28), one has 

�̇�1 = −𝑆𝑇휂𝑆 + 𝜇�̃�𝑇�̂� + 𝜇�̃�𝑇�̂� + 𝑆𝑇𝜖𝐹 + 𝑆
𝑇𝜖𝑔𝑢 (29) 

Consider the following Young's inequalities 

{
  
 

  
 𝑆𝑇𝜖𝐹 ≤

∥ 𝑆 ∥2

2
+
∥∥𝜖𝐹∥∥

2

2
;  𝑆𝑇𝜖𝑔𝑢 ≤

∥ 𝑆 ∥2

2
+
∥∥𝜖𝑔𝑢∥∥

2

2

𝜇�̃�𝑇�̂� = 𝜇�̃�𝑇[𝑉 − �̃�] ≤ 𝜇
∥ 𝑉 ∥2

2
− 𝜇

∥ �̃� ∥2

2

𝜇�̃�𝑇�̂� = 𝜇�̃�𝑇[𝑊 − �̃�] ≤ 𝜇
∥ 𝑊 ∥2

2
− 𝜇

∥ �̃� ∥2

2

 

Substituting the inequalities into (26), we get 

�̇�1 ≤ −𝑎1 [
1

2
∥ 𝑆 ∥2+

1

2
𝜉1𝑚𝑖𝑛
−1 ∥ �̃� ∥2+

1

2
𝜉2𝑚𝑖𝑛
−1 ∥ �̃� ∥2]

 +𝜇
∥𝑊∥2

2
+ 𝜇

∥𝑉∥2

2
+

∥∥𝜖𝐹∥∥
2

2
+

∥∥𝜖𝑔𝑢∥∥
2

2

                                                            (30) 

where 𝑎1 = min{(2휂min − 1), 𝜇𝜉1min, 𝜇𝜉2min},  𝑏1 =  𝜇
∥𝑊∥2

2
+ 𝜇

∥𝑉∥2

2
+

∥∥𝜖𝐹∥∥
2

2
+

∥∥𝜖𝑔𝑢∥∥
2

2
, 휂min , 𝜉1 min , and 𝜉2 min  are the 

minimum Eigen values of 휂, 𝜉1, and 𝜉2 respectively. Multiplying both sides of (30) by 𝑒𝑎1𝑡 and integrating the resulting 

equation produces 

𝐿1 ≤ (𝐿1(0) −
𝑏1
𝑎1
) 𝑒−𝑎1𝑡 +

𝑏1
𝑎1
≤ 𝐿1(0) −

𝑏1
𝑎1

(31) 

Taking into account the Lyapunov function (27), one can gets 

1

2
∥∥𝑞1∥∥

2 ≤ 𝐿(0) −
𝑏1
𝑎1
⟹ ∥∥𝑞1∥∥ ≤ √2 (𝐿(0) −

𝑏1
𝑎1
) (32) 

In view of (32), all the closed-loop signals 𝑆, �̃� and �̃� are uniformly ultimately semi-global bounded in a compact set 

defined by Ω𝑞1 ≡ {𝑞1: ∥∥𝑞1∥∥ ≤ 𝑐𝑞1}. where 𝑐𝑞1 ≡ √(𝐿(0) − 𝜅2/𝜅1)∀𝑡 ≤ 𝑡0 + 𝑇1, and 𝑇1 is the finite settling time. 
 

C. NN-BFTSMC for under-actuated subsystem 
In this section, the state space model of the under-actuated subsystem is represented in terms of the known nominal and 

the uncertain parts (33). The uncertain part is approximated by RBFNN. 

{
�̇� = 𝑁
�̇� = 𝑓2 + 𝑔2𝑢𝑥𝑦 + 𝛿2

 

where 

The lumped uncertainties/disturbances can be approximated by a RBFNN as 𝛿2 = 𝑊
∗𝑇𝛽(𝑋𝑖) + 𝜖𝛿2 . The RBFNN 

estimate of 𝛿2 is as follows 

�̂�2 = �̂�∗𝑇𝛽(𝑋𝑖) (33) 
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were 

𝑊∗ = [
𝑊𝑥

∗⊤

𝑊𝑦
∗⊤] ; 𝛽 = [

휁𝑥(𝑋𝑖) 0

0 휁𝑦(𝑋𝑖)
] ; 𝜖𝛿2 = [

𝜖𝛿𝑥
𝜖𝛿𝑦

] 

and the RBFNN estimation error is 

�̃�2 = 𝛿2 − �̂�2 = �̃�
∗𝑇𝛽(𝑋𝑖) + 𝜖𝛿2 (34) 

Let 𝜚 = 𝑀 −𝑀𝑑 be the tracking error. The fast-terminal sliding mode surfaces are given as 

𝑆 = �̇� + 𝑐𝜚 + ℎ𝜚𝑝/𝑞 (35) 

where 𝑐 ∈ ℛ2×2  and ℎ ∈ ℛ2×2  are constant diagonal matrices, 𝑞 > 𝑝 > 0 are design parameters. Differentiating (35) 

with respect to time yields 

�̇� = �̈� + 𝑐�̇� +
𝑝

𝑞
ℎdiag (�̇�)𝜚𝑝/𝑞−1                                                                                               (36) 

Substituting (33) into (35) yields 

�̇� = 𝑓2 + 𝑔2𝑢𝑥𝑦 + 𝛿2 − �̈��̈�𝑑 + 𝑐�̇� + ℎ
𝑝

𝑞
diag (�̇�)𝜚𝑝/𝑞−1 (37) 

Remark 2: The term 𝜚𝑝/𝑞−1 ⟶∞ when 𝜚 = 0. This singularity is avoided by modifying the sliding mode surface as [53] 

𝑆 = �̇� + 𝑐𝜚 + ℎΦ(𝜚). The function Φ(𝜚) is given by 

Φ(𝜚) = {
𝜚𝑝/𝑞 ,   if 𝑆‾ = 0 or 𝑆‾ ≠ 0|𝜚| > 𝜏

𝜚,   if  𝑆‾ ≠ 0, |𝜚| ≤ 𝜏
 

where 𝑆‾ = �̇� + 𝑐𝜚 + ℎ𝜚𝑝/𝑞 , 𝜏 denote a small constant threshold. 

Define the following Lyapunov function and its derivative as 

𝐿2 =
1

2
𝜚𝑇𝜚                                                                                                                                   (38) 

�̇�2 = 𝜚
𝑇(𝑁−𝑀𝑑)̇                                                                                                                          (39) 

If the virtual input is designed as 𝑁 = 𝑆 − 𝑐𝜚 + �̇�, we have 

�̇�2 = −𝜚
𝑇𝑐𝜚 + 𝑆𝑇𝜚 (40) 

Consider the following new Lyapunov function 

𝐿3 =
1

2
𝜚𝑇𝜚 +

1

2
𝑆𝑇𝑆 +

1

2
�̃�∗𝑇𝜉3

−1�̃�∗ (41) 

Differentiating (41) with respect to time gives 

�̇�3 = 𝜚
𝑇�̇� + 𝑆𝑇𝑆 + �̃�∗𝑇𝜉3

−1�̇̃�∗

 = −𝜚𝑇𝑐𝜚 + 𝑆𝑇(𝑓2 + 𝑔2𝑢𝑥𝑦 +𝑊
∗𝑇𝛽(𝑋𝑖) + 𝜖𝛿2

−�̈�𝑑 + 𝜚 + 𝑐�̇� +
𝑝

𝑞
𝑘diag (�̇�)𝑒𝑝/𝑞−1)

                                                                   (42) 

The control input and the RBFNN weight update law are designed as 

𝑢𝑥𝑦 = 𝑔−1(−𝑓 − �̂�∗𝑇𝛽(𝑋𝑖) + �̈�𝑑 − 𝜚 − 𝑐�̇�                                                                             (43) 

𝜉3 = 𝜉3
𝑇 > 0 ∈ ℛ2×2                                                                                                                    (44) 

where 𝜉3 = 𝜉3
𝑇 > 0 ∈ ℛ2×2 is a constant diagonal matrix and 𝜇 > 0 is a small constant. Substituting (43) (42) gives 

�̇�3 = −𝜚
𝑇𝑐𝜚 − 𝑆𝑇𝐾𝑆 + 𝑆𝑇𝜖𝛿2 + 𝜇�̃�

∗𝑇�̇̂�∗ (45) 
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Consider the following inequalities 

{
 
 

 
 𝑆𝑇𝜖𝐷 ≤

∥ 𝑆 ∥2

2
+
∥∥𝜖𝐷∥∥

2

2

�̃�∗𝑇�̂�∗ = �̃�∗𝑇[𝑊∗ − �̃�∗] ≤
∥𝑊∗∥2

2
−
∥∥�̃�∗∥∥

2

2

 

Substituting the inequalities into (45) gives 

�̇�3 ≤ −𝑎2 [
∥𝜚∥2

2
+

∥𝑆∥2

2
+

𝜉3min
−1

∥∥�̃�∗∥∥
2

2
]

 +𝜇
∥∥𝑊∗∥∥

2

2
+

∥∥𝜖𝐷∥∥
2

2

                                                                                                  (46) 

where 𝑎2 = min{2𝜆2min, (2𝑘min − 1), 𝜇𝜉3min},  𝑏2 = 
∥∥𝑊∗∥∥

2

2
+

∥∥𝜖𝐷∥∥
2

2
. 

Multiplying both sides of (46) by 𝑒𝑎2𝑡 and integrating the resulting equation, we get 

∥∥𝑞2∥∥ ≤ √2(𝐿2(0) −
𝑏2
𝑎2
) ≡ 𝑐𝑞2 (47) 

Hence, all the closed-loop signals 𝑒, 𝑆, and �̃� are uniformly ultimately semi-global bounded in a compact set dgnals of 

the horizontal position subsystem are semi-globally finite-time stable in a compact set Ω𝑞2 ≡ {𝑞2: ∥∥𝑞2∥∥ ≤ 𝑐𝑞2}. 

Theorem 3: For the horizontal position subsystem (33), if the FTSM surface is set as (35), the control input and the 

adaptive law are designed as (43) and (44) respectively, then all the closed loop signals of the horizontal position 

subsystem are semi-globally finite-time stable in a compact set Ω𝑞2 ≡ {𝑞2: ∥∥𝑞2∥∥ ≤ 𝑐𝑞2}. 

IV. Simulation 

In this part, the performance and the superiority of the proposed control methodology is demonstrated in the presence of 

parametric uncertainties, unknown functions, and unknown external disturbances. For the sake of comparison, we 

consider the robust integral of the signum error (RISE) [37], RBFNN based proportional-derivative SMC (NN-PD-SMC) 

[37], adaptive back-stepping with fast terminal SMC (ABFTSMC) [48] and fractional order SMC (FSMC) [9] 

 

For the quadrotor parameters, refer to [47]. The NNFISMC parameters are 𝜆1 = 20 × diag {1,1,1,1}, Λ =  24 ×

diag {1,1,1,1},  휂 = 20 × diag {1,1,1,1},  𝑐 =  diag {2,2,2.5,6},  𝐾 = diag {4.5,4.5,4.5,6} . The order of the fractional 

derivative is 𝜎 = 0.2 . The RBFNN tuning parameters are 𝜉1 = 10
−3 × diag {1.5,1.5,1.5,1.5} , 𝜉2 = 10

−3 ×

diag {2,2,2,2}. The parameters of NN-BFTSMS are 𝑐 = diag {20,20}, ℎ = 2 × 10−3diag {1,1}, 𝐾 = diag {24,24}, 𝜉3 =

diag {0.15,0.15} 𝜇 = 0.001, 𝛾𝑗 = 1 and 

𝑐𝑗 = [
−0.5 −0.25 0 0.25 0.5
−0.5 −0.25 0 0.25 0.5

]. 

The desired trajectories are given by 

Υ𝑑 =

[
 
 
 
 

sin (0.8𝑡)

arcsin (𝑢𝑥sin 𝜓 − 𝑢𝑦cos 𝜓)

arcsin (
𝑢𝑥cos 𝜓+𝑢𝑦sin 𝜓

cos 𝜙𝑑
)

0.5sin (0.5𝑡) ]
 
 
 
 

;  𝑀𝑑 = [
2
1
]. 

A parametric uncertainty Δ = 40% is considered and the sinusoidal external disturbances are given by 

𝛿1 = [

5cos (4𝑡)

5sin (4𝑡)cos (3𝑡)
5sin (4𝑡)

5(cos (5𝑡) + sin (2𝑡))

] ; 𝛿2 = [
3(cos (0.5𝑡) + sin (2𝑡))
2cos (0.5𝑡)sin (0.5𝑡)

]. 
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The simulation results are depicted in Figs. 2-6. The responses of the quadrotor fully-actuated subsystem are shown in 2. 

It is clear that under the action of both FSMC and RISE, the pitch and roll angles failed to stabilized to zero while the 

yaw angle and the vertical position settle very close to the desired trajectories. It is worth noting that FSMC in [9] and 

RISE in [37] provided excellent tracking result in the presence of the small amplitude sinusoidal disturbances. 

Nonetheless, in this work, the controllers performed poorly in the presence of sinusoidal disturbances with bigger 

amplitudes. The poor performances are due to the fact that the controllers lack online estimation algorithm to estimate 

and overcome the time varying disturbances. By contrast, the NN-FISMC derives the fully-actuated subsystem to follow 

the desired trajectories in finite time. This is because NN-FISMC integrates the approximation ability of RBFNN to learn 

the uncertain functions and high amplitude disturbances, the fractional order derivative of the tracking error for improved 

robustness, and the integral error action to eliminate the steady state errors. As presented in Fig. 3, the NN-FISMC is able 

to achieve null steady state errors unlike the FSMC and RISE. 

 

The horizontal position tracking responses are depicted in Fig. 4. It can be seen that the horizontal position 

coordinates trace the desired signals under the ABFTSMC due to its ability to estimate and compensate the upper-bound 

of the disturbances. The NN-PD-SMC gives an improved performances with lower rise and settling times compared to 

the ABFTSM. The NN incorporated to the PD-SMC identifies the time varying disturbances thereby providing better 

disturbance suppression than ABFTSMC. Replacing the adaptation mechanism of ABFTSMC with RBFNN results in the 

proposed NNBFTSMC. It is clear that the performance of the NN-BFTSMC is superior to that of both NN-PD-SMC and 

ABFTSMC in terms of the rise and the settling times. Furthermore, the tracking errors of the horizontal position 

converge to zero 

 

Fig. 2. Attitude tracking 

 
Fig. 3. Attitude tracking errors 
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faster with NN-BFTSMC than with both ABFTSMC and NNPD-SMC as shown in Fig. 5. The control inputs are 

displayed in Fig. 6. 
 

V. Conclusions 
In this article, a robust finite time NN-FISMC and NNBFTSMC are developed to tackle the trajectory tracking issue of a 

quadrotor suffering from external disturbances and uncertainties. First and foremost, a NN-FISMC has been designed for 

the fully-actuated subsystem. Furthermore, a NN-BFTSMC has been designed to control the under-actuated subsystem 

and generate the desired pitch and roll angles. Simulation results have shown that the robust hierarchical control 

structure, NN-FSMC combine with NN-BFTSMC, ensures excellent attenuation of external disturbances and 

convergence of the quadrotor trajectories to the desired states in a short time. The closed loop system has been proved to 

converge to a small compact set near the origin in finite time. Future work will further validate the efficacy of the 

proposed controller on a real-time quadrotor. 

 

 
Fig. 4. Position tracking 

 

 
Fig. 5. Position tracking errors  
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Fig. 6. Control inputs 
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