

Global Journal of Research in Engineering & Computer Sciences ISSN: 2583-2727 (Online) Volume 04| Issue 04 | July-Aug. | 2024

Journal homepage: https://gjrpublication.com/gjrecs/

Review Article

Three – Pass Fire Tube Boilers for production of Steam, Hot Water and Superheated Water *Emin Taner ELMAS

Assistant Professor Dr., Vocational School of Higher Education for Technical Sciences, Division of Motor Vehicles and Transportation Technologies, Department of Automotive Technology, Iğdır University, Turkey & Graduate School of Natural and Applied Sciences - Major Science Department of Bioengineering and Bio-Sciences, Iğdır University, Turkey DOI: 10.5281/zenodo.12741030 Submission Date: 22 May 2024 | Published Date: 15 July 2024

*Corresponding author: Emin Taner ELMAS

Assistant Professor Dr., Vocational School of Higher Education for Technical Sciences, Division of Motor Vehicles and Transportation Technologies, Department of Automotive Technology, Iğdır University, Turkey & Graduate School of Natural and Applied Sciences - Major Science Department of Bioengineering and Bio-Sciences, Iğdır University, Turkey_76000

Abstract

In this paper, the technical details and specifications of Three – Pass Fire Tube Boilers for production of Steam, Hot Water and Superheated Water, are introduced.

The most manufactured steam generator type for output flow rate capacities ranging from 1 t/h to 30 t/h is the three-pass fire tube boiler unit, fired by gas or oil and delivered in a pre-fabricated form.

Regarding the smaller or medium output ranges of saturated steam and hot water; saturated steam boiler, low pressure steam boiler, superheated steam boiler and hot water boiler variation models are manufactured. All models commonly must have the optimum production engineering and thermodynamical design specifications, the highest technically possible efficiency rate, easy to operate with low maintenance works, high quality and time-tested components for firing and control, modern manufacturing methods with corresponding high quality control, international supervision, classification, inspection and approval of an independent third party notified body as well as quality control and quality assurance activities to be realized by the independent quality department & organization of the boiler manufacturer company.

These three-pass fire tube boilers use fuel which is gas or oil and then produce heat energy, steam and power, respectively. As a general constructional structure, the pressurized boiler shell has end-shell plate, generous fire-tube dimensions for optimum combustion and lower emissions, optimum layout and dimensions of flue-gas passes, more steam space to obtain high quality steam, water cooled reversing chamber, large water volume.

The difference between the feed water and the exit flue gas temperature is the main source of energy. The threepass fire tube boilers can achieve an average efficiency of 89%. This efficiency can be increased considerably by installing a feed water pre-heater (economizer) to take the advantage of temperature difference. In new boiler units economizers must always be included to the system.

Keywords: Three-Pass Fire Tube Boiler, Steam Generator, Steam, Hot Water, Superheated Water, Energy, Energy Efficiency, Energy Transfer, Heat Energy, Thermodynamics, Fluid Mechanics, Heat Transfer, Mathematics, Energy Production Systems.

INTRODUCTION

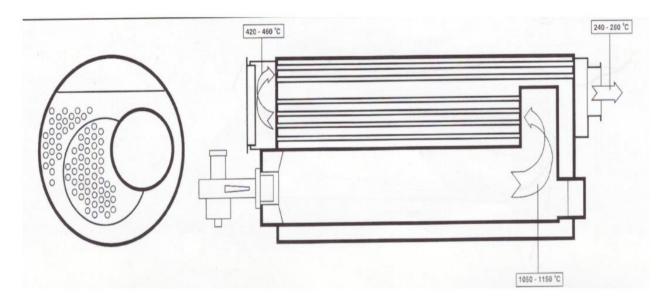
The most manufactured steam generator type for output flow rate capacities ranging from 1 t/h to 30 t/h is the three-pass fire tube boiler unit, fired by gas or oil and delivered in a pre-fabricated form. Hot water three-pass fire tube boilers are classified in two groups.

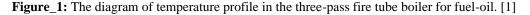
Low pressure hot water boilers have a maximum output temperature of 120 °C and are manufactured according to TRD 702 Standards. High pressure hot water boilers have output temperatures of above 120 °C and are also manufactured according to TRD 402 Standards.

Due to the large water volumes necessary in such units, these boilers have special pipe configuration and hot water supports which enable the return water to mix inside the boiler thoroughly.

Regarding the smaller or medium output ranges of saturated steam and hot water; saturated steam boiler, low pressure steam boiler, superheated steam boiler and hot water boiler variation models are manufactured. All models commonly must have the optimum production engineering and thermodynamical design specifications, the highest technically possible efficiency rate, easy to operate with low maintenance works, high quality and time-tested components for firing and control, modern manufacturing methods with corresponding high quality control, international supervision, classification, inspection and approval of an independent third party notified body as well as quality control and quality assurance activities to be realized by the independent quality department & organization of the boiler manufacturer company.

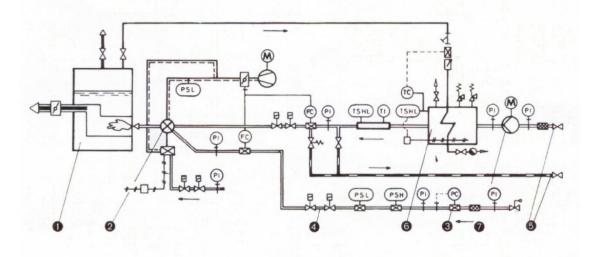
These three-pass fire tube boilers use fuel which is gas or oil and then produce heat energy, steam and power, respectively. As a general constructional structure, the pressurized boiler shell has end-shell plate, generous fire-tube dimensions for optimum combustion and lower emissions, optimum layout and dimensions of flue-gas passes, more steam space to obtain high quality steam, water cooled reversing chamber, large water volume. As the boiler material; the boiler body, dished ends, furnace and fire box according to DIN 17155, are made of 17 Mn 4 also known as P295 GH and/or HII quality special boiler steel, St 35.8-I quality seamless steel tubes are used for boiler tubes and these correspond to DIN 17175.


Boiler output, burner system and size determine the type of variant. Three pass system remains unchanged.


A superheater is installed to raise the steam temperature above that of the saturated steam. It is installed in the front reversing chamber if only low superheating is required. If higher temperatures are needed, it is installed in the inside or outside reversing chamber where a higher flue gas temperature is obtained. An economiser is added to the boiler exit for further utilization of the flue gas energy.

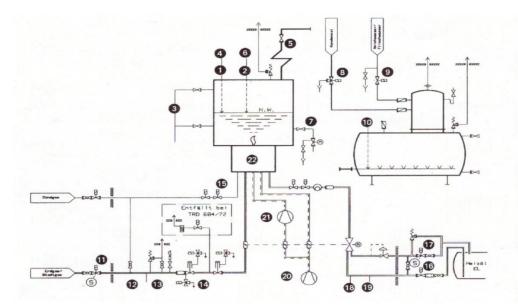
As the steam production; the boiler is fed with treated water. Guides installed in the water space ensure even distribution. The arrangement of the fire tube (furnace) and the flue gas smoke tubes guarantees undisrupted development of steam bubbles and stable water circulation under all operating conditions. This is one of the basic prerequisites for a long service life of the boiler.

The steady and even admission of water to all tube banks and surrounding parts like the fire tube, flue gas tubes and reversing chambers guarantees highly efficient heat flux. Thus, the thermal stress is kept to a minimum.


The below diagram given by Figure 1 shows the temperature profile in the three-pass fire tube boiler for fuel-oil. [1]

Method, Findings and Discussion

The three-pass fire tube boiler is primarily designed for gas (natural gas) or liquid fuel. Other than the burner additional special equipment is not needed either for oil or gas firing or for a combination of both. For heavy oil firing, local directives regarding emissions are taken into account. The below diagram given by Figure 2 shows a time, tested boiler model for combined firing. Pressurized or rotary atomizing burner are installed. The gas lines are constructed and laid out to ensure safety and absolute gas tightness.

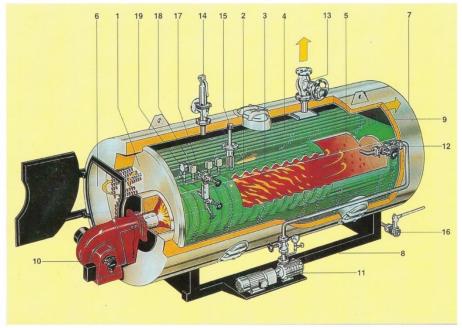


Figure_2: The boiler model for combined firing. [1]

The numbered parts and sections on Figure 2 are explained as follows: [1]

- 1. Boiler
- 2. Combined oil and gas burner
- 3. Gas pressure regulating
- 4. Safety valve
- 5. Oil supply and return
- 6. Fuel-oil pre-heater
- 7. Oil-pump

It is legally permitted to operate a boiler without continuous supervision when special supervisory equipment has been installed. 24 hours and 72 hours periodic controls are accepted by German TRD 604 Standard. This additional equipment is shown in the below diagram given by Figure 3. [1] According to German TRD 603 Standard, periodic high and low pressure operation is also possible.

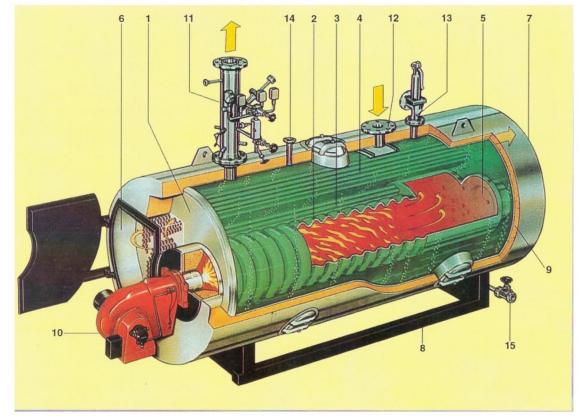


Figure_3: The diagram of special supervisory equipment required by German TRD 604 Standard. [1]

The numbered parts and items on Figure 3 are explained as follows: [1] <u>German TRD 604 / 24 hours:</u>

- 1- Water level limiter "min"
- 2- 2nd water level limiter "min"
- 3- Limit switch to shut off boiler feed water pumps
- 4- Electrical conductivity limiter of boiler water
- 5- Limiter of superheated steam temperature German TRD 604 / 72 hours:
- 6- Water level limiter "min"
- 7- Conductivity control + limitation (item 4 is cancelled)
- 8- Monitoring of conductivity and turbidity
- 9- Monitoring of fresh water hardness
- 10- Water level "min"
- 11- Safety valve in gas line
- 12- 2nd gas pressure monitor "min"
- 13- 2nd gas pressure monitor "max"
- 14- Gas tightness monitoring of main gas valve
- 15- 2nd gas ignition valve
- 16- Quick closing valve
- 17- Quick closing valve on oil return
- 18- Oil pressure monitor "min"
- 19- 2nd oil pressure monitor "min"
- 20- 2nd combustion air pressure switch
- 21- 2nd atomiser air pressure switch
- 22- Self-checking flame detector

The three-pass fire tube boiler for generation of saturated steam is shown in Figure 4, as below.



Figure_4: The three-pass fire tube boiler for generation of saturated steam. [1]

The numbered sections on Figure 4 are explained as follows: [1]

- 1- Boiler body
- 2- Furnace
- 3- Smoke tubes 2. Pass
- 4- Smoke tubes 3. Pass
- 5- Water cooled firebox
- 6- Front reversing chamber
- 7- Smoke outlet
- 8- Boiler frame
- 9- Insulation
- 10- Burning system gas or/and fuel-oil burner
- 11- Feed water pump(s)
- 12- Feed water valve
- 13- Steam valve
- 14- Safety valve
- 15- Water level limiter
- 16- Blow down valve
- 17- Water level indicator(s)
- 18- Pressure controller(s)
- 19- Pressure gauge(s)

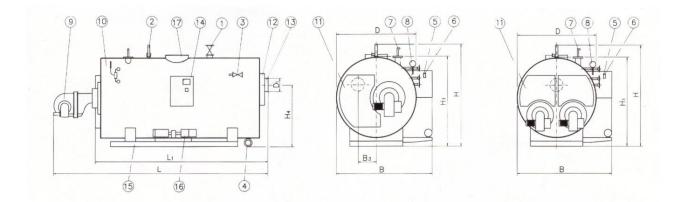
The three-pass fire tube boiler for generation of high temperature hot water is shown in Figure 5, as below.

Figure_5: The three-pass fire tube boiler for generation of high temperature hot water. [1]

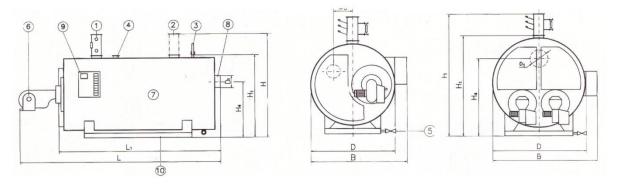
33

The numbered sections on Figure 5 are explained as follows: [1]

- 1- Boiler body
- 2- Furnace
- 3- Smoke tubes 2. Pass
- 4- Smoke tubes 3. Pass
- 5- Water cooled firebox
- 6- Front reversing chamber
- 7- Smoke outlet
- 8- Boiler frame
- 9- Insulation
- 10- Burning system gas or/and fuel-oil burner
- 11- Hot water outlet with armatures
- 12- Water return
- 13- Safety valve
- 14- Feed water inlet
- 15- Blow down valve


CONCLUSION

The numbered parts, items and also the general dimensions of the three-pass fire tube boiler for generation of saturated steam are shown in Figure 6, as below. [1]


The numbered parts, items and also the general dimensions of the three-pass fire tube boiler for generation of high temperature hot water are shown in Figure 7, as below. [1]

All the detailed technical specifications including boiler type, maximum permissible operating pressure, heating surface, water volume, transport weight, furnace type, fuel consumption, etc. and the boiler dimensions for generation of saturated steam is shown in Table 1, as below. [1]

All the detailed technical specifications including boiler type, maximum permissible operating pressure, heating surface, water volume, transport weight, furnace type, fuel consumption, etc. and the boiler dimensions for generation of high temperature hot water is shown in Table 2, as below. [1]

Figure_6_ The numbered parts, items and also the general dimensions of the three-pass fire tube boiler for generation of saturated steam. [1]

Figure_7: The numbered parts, items and also the general dimensions of the three-pass fire tube boiler for generation of high temperature hot water. [1]

Type			무	8		12 1	16 18	18 22	2 30	40	52	65	80	100	125	140	165	200	240	280	300	305	335	370	410	460	500	540
Aaksi Aax. F	mum çalış Permissibl	Maksimum çalışma basıncı Max. Permissible operation press	bar	-	18 18	18	18 18	18 18	3 18	4	19	27	25	23	25	20	24	22	20	18	18	24	24	23 .	22	20	18	18
•	Buhar	Nominal Nominal	kgh	h 260	50 400	-	650 800	-	1000 1250		1600 2100	0 2600	0 3200	4000	0 5000	0 6000	7000	8000	10000	11500	12500	13000	14000	16000	18000	20000	23000	25000
	Steam	Sürekli maksimum B Maximum continuous	us kg/h	100	325 500	-	800 100	1000 125	1250 1600	0 2000	00 2600	0 3200	0 4000	5000	0 6000	0002 0	8000	10000	12000	14000	15000	16000	18000	20000	22000	25000	28000	30000
etiseq		Nominal	MM	V 0,17		0,26 0,4	0,42 0,52	52 0,65	65 0,81	1 1,00	0 1,37	1,69	9 2,80	2,60	3,25	3,90	4,55	5,20	6,50	7,48	8,13	8,45	9,10	10,40	11,70	13,00	14,95	16,25
EA B	is	Nominal	Gcal/h	l/h 0,15	15 0,22		0,36 0.45	45 0,56	6 0,70	0 0,86	6 1.17	1,45	5 1,79	2,24	2,80	3,35	3,91	4,47	5,59	6,43	6;99	7,27	7,83	8,94	10,06	11,18	12,86	13,98
	Heat	Sürekli maksimum	MW	/ 0,21	21 0,33		0,52 0,65	55 0,81	1,00	0 1,30	0 1,69	9 2,08	3 2,60	3,25	3,90	4,55	5,20	6,50	7,80	9,10	9.75	10,40	11,70	13,00	14,30	16,25	18,20	19,60
		Maximum continuo.	Gcal/h	M 0,18	18 0,28		0,45 0,5	56 0,70	0,86	6 1,12	2 1,45	5 1,79	9 2,24	2,80	3,35	3,91	4,47	5,59	6,71	7,83	8,39	8,94	10,06	11,18	12,30	13,98	15,65	16,77
sitma	isitma yüzeyi Heating surface		È	80	12		15,5 18	3 22	53	39	52	. 65	80	100	127	140	165	200	240	280	300	305	335	370	410	460	500	540
Su ha Nater	Su hacmi (dolu) Water volume (full)	(ull)	Ê	0,76	76 0,98		1,13 1,40	40 1.72	2 2,18	8 3,42	2 4,80	6,00	7,60	9,80	12,60	0 13,40	15,10	19,40	22,80	24,10	25,70	31,30	33,60	36,60	41,80	45,40	45,80	49,00
Taşım	Taşıma ağırlığı Trasport weight		-	1,90	90 2,40		2,80 3,30	30 4,00	0 4,80	0 5,90	0 7,30	8,60	10,30	12,20	0 15,20	0 16,80	18,30	21,20	25,00	26,90	28,20	31,40	33,40	35,80	39,40	43,50	48,10	50,40
E Ť	Fuel-oil Heavy oil	Nominal Nominal	kg/h	19	9 28		45 55	69 9	86	103	3 144	178	220	274	343	411	480	548	685	789	857	891	960	1096	1233	1370	1576	1714
noitqm T T	u=41000	Sürekli maksimum Maximum continuous	kg/h	22	2 35		55 69	98 86	103	3 137	7 178	220	274	343	411	480	548	685	822	959	1028	1096	1233	1370	1508	1714	1918	2055
a 2 : nsuco jon Aµes toje	Doğalgaz Natural gas	Nominal Nominal	Νm²/h	h 22	2 32		52 65	5 80	100	127	7 167	207	256	320	400	478	558	638	798	917	994	1037	1117	1275	1435	1595	1834	1994
1	unim ²	Sürekli maksimum Maximum continuous	us Nm²/h	/h 27	7 40		65 80	100	0 127	160	0 207	256	320	400	478	558	638	798	957	1117	1197	1275	1435	1595	1754	1994	2232	2392
		-	L mm	2540	40 2645	5 2795	95 2885	85 3125	3615	3915	5 4560	4970	5740	5840	6150	6785	7080	7670	7870	8550	8950	7435	7720	7920	8370	8420	8800	9250
Ölçü	Ölçüler (yaklaşık)		B mm	1550	50 1700	0 1750	50 1850	50 1900	0 1950	2150	0 2250	2350	2450	2650	2850	2850	2950	3150	3350	3450	3450	3900	4000	4100	4200	4400	4500	4500
Dim	ensions (a		H mm	1880	30 2030	0 2080	80 2230	30 2230	90 2280	2540	0 2640	2810	2910	3165	3365	3500	3600	3800	4100	4200	4200	4515	4695	4795	4895	4995	5225	5380
		-	L, mm	2050	50 2050	0 2200	00 2250	50 2500	0 2900	3200	0 3850	4200	4850	5050	5350	5750	6050	6550	6750	7100	7500	6500	6600	6800	7250	7300	7350	7800
		-	um d	1200	00 1350	0 1400	00 1500	00 1550	1600	1800	0 1900	2000	2100	2300	2500	2500	2600	2800	3000	3100	3100	3600	3700	3800	3900	4100	4200	4200
			H, mm	1500	00 1650	0 1700	00 1800	00 1850	0 1900	2100	0 2200	2300	2400	2600	2800	2800	2900	3100	3300	3400	3400	3760	3860	3960	4060	4260	4360	4360
Smol	ke outlet c	Dumangazi çikiş olçuleri Smoke outlet dimensions	D, mm	200	0 200			-	300	400	400	400	500	200	600	600	700	700	800	006	900	1000	1000	1100	1100	1200	1300	1300
		_	E I	850	-		55 950	1035	1090	1280	1370	1390	1480	1600	1710	1710	1770	1920	2110	2075	2075	2380	2450	2650	2700	2750	2850	2850
		B	B, mm	300	0 320	-	365 390	390	430	430	520	530	570	820	875	675	670	750	810	850	850							

Table_1: Technical specifications including boiler type, maximum permissible operating pressure, heating surface, water volume, transport weight, furnace type, fuel consumption, etc. and the boiler dimensions for generation of saturated

35

Tipe	laksimum (lax. Permis		<u></u>	Heat		Isitma yüzeyi Heating surface	Su hacmi (dolu) Water volume (full)	Taşıma ağırlığı Trasport weight	Fuelol	Hum41000 Hum41000	Yakat aanti Fual cone Vatagaz	Hu-35000			Olcillar (v	Dimensions (app)				Dumangaz
	Maksimum çalışma basıncı Max. Permissible operation press	Nominal	Nominal	Sürekli maksimum.2	Maximum continuous	808	olu) ie (full)	giệi	Nominal	0 Sürekli maksimum Maximum continuous	Nominal	Sürekli maksimum Maximum continuous	1	8	H H	rs (app)	٩	¥	đ	Dumangazı çıkış ölçüleri H.
WH	28	WW	Goaih	WW	Goath	Έ	Έ	-	ųđų	ų day Si	Nerth	Nm/hh	E	٤	E	E	E	E	£	E
80	99	0,17	0,15	0,21	0,18	80	0,76	1,7	18	23	21	25	2640	1650	2200	2060	1200	1500	200	850
12	18	0,26	.0,22	0,32	0,27	12	0,98	2,2	27	33	31	38	2645	1700	2350	2050	1360	1660	200	860
16	18	0,38	0,33	0,48	0,41	15,5	1,13	2,4	40	49	46	88	2796	1760	2400	2200	1400	1700	250	996
18	18	0,45	0,39	0,56	0,48	18	1,4	2,8	47	28	99	67	2885	1860	2660	2250	1500	1800	250	996
23	18	0,55	0,47	0,69	0,59	23	1,72	3,2	22	71	99	83	3125	1900	2600	2500	1550	1850	300	1035
8	18	0,73	0,63	0,91	0,78	59	2,18	4,2	88	25	102	109	3615	1950	2650	2900	1600	1900	30	1090
40	14	0,98	0,84	1,22	1,05	39	3,42	5,4	101	126	117	148	3915	2150	2850	3200	1800	2100	400	1280
52	19	1,36	1,17	1.7	1,46	52	4,80	7,3	140	175	163	204	4560	2260	3000	3850	1900	2250	400	1370
65	27	1,68	1,44	2,1	1,64	65	6,00	8,6	173	197	201	229	5150	2360	3100	4250	2000	2350	89	1390
80	25	2,08	1,79	2,6	2,23	80	7,60	10,3	215	267	250	311	5740	2450	3226	4850	2100	2450	200	1480
100	23	2,64	2,27	3,3	2,84	100	9,80	12,2	272	340	317	396	5840	2650	3425	5050	2300	2650	200	1600
125	25	3,2	2,75	4,0	3,44	127	12,60	15,2	330	412	383	480	6150	2860	3660	5350	2500	2850	09	1710
140	20	3,68	3,16	4,6	3,96	140	13,40	16,8	379	475	440	552	6785	2850	3060	5750	2500	2850	600	1710
165	24	4,16	3,58	5,2	4,47	165	15,10	18,3	429	536	499	623	7060	2960	3760	6050	2800	2960	700	1770
175	23	4,8	4,13	6,0	5,16	174	15,2	19,6	495	618	576	719	7520	2050	3780	6400	2600	2950	200	2080
200	22	5,6	4,82	7,0	6,02	199	17,1	20,8	577	721	672	839	7870	3060	3880	6750	2700	3060	700	2110
230	20	6,56	5,64	8,2	7,05	228	18,2	22,4	676	844	786	983	8020	3150	3980	0069	2800	3150	800	2190
260	18	7,44	6,40	9,3	8,00	260	21,4	24,5	767	958	802	1115	8550	3360	4180	7100	3000	3350	005	2360
285	19	8,4	7,22	10,5	9,03	285	25,6	27,6	865	1082	1006	1258	6940	3400	4260	6400	3400	3660	1000	2470
320	23	9,6	8,26	12,0	10,32	320	28,0	30,05	989	1236	1151	1438	7300	3500	4360	6650	3500	3660	1100	2065
370	22	11,2	9,63	14,0	12,04	370	30,5	33,8	1153	1442	1342	1678	7650	3600	4460	7000	3600	3760	1200	2715
405	21	12,00	10,32	15,0	12,9	405	35,3	38,7	1236	1545	1438	1798	7750	3800	4860	7100	3800	3960	1200	2850
440	20	12,8	11,01	16,0	13,76	440	37,5	40,7	1319	1648	1534	1918	7800	3000	4760	7150	3000	4060	1200	2880
500	18	14,88	12,80	18,6	16,00	500	41,00	46,2	1533	1916	1784	2230	8000	4100	5110	7350	4100	4260	1300	3120

steam. [1] (Note: 10 Bar(g) saturated steam, feed water temperature of 102 °C and maximum 12% excess air firing conditions)

Table_2: Technical specifications including boiler type, maximum permissible operating pressure, heating surface, water volume, transport weight, furnace type, fuel consumption, etc. and the boiler dimensions for generation of high temperature hot water. [1] (Note: 10 Bar (g) operating pressure, 160 / 120 °C water outlet and return temperature and maximum 12% excess air firing conditions)

The difference between the feed water and the exit flue gas temperature is the main source of energy. The threepass fire tube boilers can achieve an average efficiency of 89%. This efficiency can be increased considerably by installing a feed water pre-heater (economizer) to take the advantage of temperature difference. In new boiler units economizers must always be included to the system. In case of existing ones, adding an economizer can greatly improve the unit's efficiency. The economizer can be installed in various positions between the flue-gas outlet of the boiler and the stack. The most favorable route for the flue-gas must be applied. [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]

References

- The catalogue of "DESA-OTAK Kazanları" / Üç Geçişli Alev-Duman Borulu Buhar ve Kızgın Su Kazanları / Three_Pass Fire Tube Boiler for Steam and Hot Water / published by Desa Otak Mühendislik ve Taahhüt Sanayi ve Ticaret A.Ş. (Desa Otak Engineering and Contracting Inc. İzmir, Turkey) which is a member company of Yaşar Holding.
- Emin Taner E. (2023). Thermodynamical And Experimental Analysis of Design Parameters of a Heat Pipe Air Recuperator. Global Journal of Research in Engineering & Computer Sciences, 3(6), 6–33. https://doi.org/10.5281/zenodo.10116309
- Elmas, Emin Taner (2019) Thermodynamical Balance Associated with Energy Transfer Analysis of the Universe Space as a Pressure Vessel Analogy. Journal of Applied Sciences, Redelve International Publications 2019(1): RDAPS- 10002.
- 4. Elmas, Emin Taner (2017) Productivity and Organizational Management (The Book) (Chapter 7): Prospective Characteristics of Contemporary Engineer (By the Approach of Mechanical Engineering) Contribution and Role of the Mechanical Engineer to the Organization Management and Productivity. Machado Carolina, Davim J Paulo (Eds.), DEGRUYTER, Walter de Gruyter GmbH, Berlin / Boston, Spain (ISBN:978-3-11-035545-1)
- Elmas, Emin Taner (2017) Prospective Characteristics of Contemporary Engineer (By the Approach of MechanicalEngineering) Contribution and Role of the Mechanical Engineer to the Organization Management and Productivity). DeGruyter, Germany (DOI 10.1515 / 9783110355796-007)
- 6. Elmas, Emin Taner, Evaporation Plant for Recycling of Caustic Soda, INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET Emin Taner Elmas., Vol.3, No.3, 2017
- 7. Elmas, Emin Taner, (2014), Çağımızın Mühendisinden Beklenenler, Gece Kitaplığı, ISBN:9786053244158
- Emin T. E. (2023). Design, Production, Installation, Commissioning, Energy Management and Project Management of an Energy Park Plant Consisting of Renewable Energy Systems Established at Igdir University. In Global Journal of Research in Engineering & Computer Sciences (Vol. 3, Number 6, pp. 67–82). https://doi.org/10.5281/zenodo.10406670
- 9. ÇELİK ÜRETİMİNDE ELEKTRİK ARK OCAKLARINDA ENERJİ MALİYETLERİNİN VE ENERJİ VERİMLİLİK FAKTÖRLERİNİN ARAŞTIRILMASI INVESTIGATION ON ENERGY COSTS AND ENERGY EFFICIENCY FACTORS OF ELECTRIC ARC FURNACE FOR STEEEL PRODUCTION, Fenerbahçe Üniversitesi Tasarım, Mimarlık ve Mühendislik Dergisi - Journal of Design, Architecture & amp; Engineering Hasan TAMSÖZ *, Emin Taner ELMAS ** FBU-DAE 2021 1 (3) : 163-180
- 10. SİNTER TESİSLERİNDE ENERJİ KULLANIM NOKTALARI VE ENERJİYİ VERİMLİ KULLANACAK YÖNTEMLERİN BELİRLENMESİ DETERMINATION OF ENERGY UTILIZATION POINTS AND THE METHODS USING THE EFFICIENT ENERGY FOR SINTERING PLANTS, Fenerbahçe Üniversitesi Tasarım, Mimarlık ve Mühendislik Dergisi - Journal of Design, Architecture & amp; Engineering Adem KAYA*, Emin Taner ELMAS** FBU-DAE 2022 2 (2): 170-181
- 11. Emin Taner ELMAS. (2024). The Electrical Energy Production Possibility Research Study by using the Geothermal Hot Water Resources, which is a kind of Renewable Energy Resource, located at the Region of Mollakara Village which is a part of Diyadin Town and City of Ağrı, Turkey. In Global Journal of Research in Engineering & Computer Sciences (Vol. 4, Number 1, pp. 90–101). https://doi.org/10.5281/zenodo.10729333
- 12. ELMAS, Emin Taner. (2024). Energy Analysis, Energy Survey, Energy Efficiency and Energy Management Research carried out at Iğdır University. In Global Journal of Research in Engineering & Computer Sciences (Vol. 4, Number 2, pp. 12–30). https://doi.org/10.5281/zenodo.10828077
- ELMAS, Emin Taner. (2024). A Research Study of Salt Dome (Salt Cave) Usage Possibility for CAES Compressed Air Energy Storage Systems. In Global Journal of Research in Engineering & Computer Sciences (Vol. 4, Number 2, pp. 128–131). https://doi.org/10.5281/zenodo.10980421
- 14. ELMAS, Emin Taner. (2024). Wankel Rotary Piston Engine Design Project. In Global Journal of Research in Engineering & Computer Sciences (Vol. 4, Number 3, pp. 1–4). https://doi.org/10.5281/zenodo.11117047
- Emin Taner ELMAS*. Project for "Amphibious Mobile Snow Track Ambulance" for Healthcare System. Am J Biomed Sci & Res. 2024 22(4) AJBSR.MS.ID.002990, DOI: 10.34297/AJBSR.2024.22.002990
- Emin Taner ELMAS*. The first "Olive Seedlings" and "Artichoke Seedlings" Planted in Iğdır Province, Turkey. Am J Biomed Sci & Res. 2024 22(5) AJBSR.MS.ID.002996, DOI: 10.34297/AJBSR.2024.22.002996
- ELMAS, Emin Taner. (2024). An innovative solar dish type collector concentrator system having an original unique geometrical mathematical model called as DODECAGON which has 12 equal segments. In Global Journal of Research in Engineering & Computer Sciences (Vol. 4, Number 3, pp. 31–38). https://doi.org/10.5281/zenodo.11397848
- Emin Taner ELMAS*. Waste Heat Recovery Boilers (WHRBs) and Heat Recovery Steam Generators (HRSGs) used for Co-generation and Combined Cycle Power Plants. Op Acc J Bio Sci & Res 12(1)-2024. DOI: 10.46718/JBGSR.2024.12.000284

 ELMAS, Emin Taner. (2024). Presentation and Curriculum of Division of Motor Vehicles and Transportation Technologies & Department of Automotive Technology at Vocational School of Higher Education for Technical Sciences at Iğdır University, Turkey. In Global Journal of Research in Engineering & Computer Sciences (Vol. 4, Number 3, pp. 60–67). https://doi.org/10.5281/zenodo.12536211

CITATION

ELMAS, Emin Taner. (2024). Three – Pass Fire Tube Boilers for production of Steam, Hot Water and Superheated Water. In Global Journal of Research in Engineering & Computer Sciences (Vol. 4, Number 4, pp. 29–38). https://doi.org/10.5281/zenodo.12741030

