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INTRODUCTION  
Disturbances such as sensor measurement noise, actuator noise, and parameter uncertainties affect the performance of 
dynamical systems [1]. Also, modelling errors such as un-modelled dynamics, model-order-reduction, linearization also 
affect control effectiveness. Not to mention, it might be the case where the structure of the model is known but the 
system is (parametrically) uncertain. These discrepancies between the actual system and its mathematical representation 
are inexorable. Thus, in control design, a single transfer function cannot be used to precisely describe the practical 
system. One solution is to come up with sets of models that contain the actual system under study and then quantify the 
uncertainty bound between the actual system and its model. 

The disturbance and model uncertainty are the driving factors for using feedback [2],[3]. Hence, modelling 
disturbance and uncertainty is crucial in control design. One approach that can be utilized for disturbance and uncertainty 
modelling is to describe the actual plant by a nominal plant and some characterization of the uncertainty [2]. Due to 
shortcomings of a model to precisely emulate the practical system, robustness has become a crucial factor in design of 
control systems [4]. Robust control is particularly concerned with powerful methods for the analysis and design of 
control systems in the presence of uncertainties [5]. In robust control, there are two kinds of specifications: robust 
stability and robust performance. To avoid difficulty in control system design, it is crucial to convert the two different 
specifications into the same type, mathematically. Favourably, when performance specification is in terms of ℋ∞ norm, 
it is synonymous to a certain robust stability problem [1].   

An analytical plant model for use in the derivation of linearized uncertainty model for control design is needed. It 
allows us to easily obtain both parametric and unstructured uncertainty models [3]. Some methodologies were proposed 
for the design of compensators for some sort of mass-spring-dashpot systems (MSD) [6]-[11]. In [6] robust µ-synthesis 
for MSD with spring stiffness constant uncertainty was studied. For each level of uncertainty, a compensator was 
designed to maximize the performance. Like in [6], the spring stiffness constant uncertainty was studied in [7] but using 
the  ℋ∞ loop-shaping control. Other robust control methods proposed in the literature for the control of the MSD include 

Abstract 
This paper focuses on the robust stability and performance of suboptimal ℋ∞  control on mass-spring-dashpot 

systems subject to parametric uncertainty and external disturbances. The objective is keeping the vertical 

displacement of the system constant under uncertainty and disturbance. For the control system to achieve 

satisfactory performance, suitable weighting filter functions for performance and control effort were respectively 
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the ℋ∞ with mixed sensitivity in [8], robust control system design using random search and genetic algorithms in [9], to 
mention but only a few. 

In this work, the dynamics of a single-stage MSD system with parametric uncertainties in mass, spring and dashpot 

under the influence of exogenous disturbance is studied. To achieve robust stability and robust performance over a 

bandwidth of 0.01-100 rad/sec in the presence of these uncertainties and exogenous disturbance, the robust (sub)optimal 

ℋ∞ control is designed. Suitable control and performance weighting filter functions have been designed. The rest of the 

paper is organized as follows. In second section, we present the mathematical modelling of the nominal plant followed by 

uncertainty modelling. Third section is devoted to the design of (sub)optimal ℋ∞  feedback controller. Discussion on 

formulation of the robust design problem into minimization problem is presented followed by filter functions design and 

controller order reduction. In section four, the frequency domain and time domain simulation results are discussed. 

Section five concludes the paper. 

 

System Description and Modelling  
As shown in Fig. 1a, the system under study is a single-stage, fixed-base configuration MSD with spring and dashpot 

in parallel. The system parameters and variables are described in Table I. Additionally, the free-body-diagram of the 
system is shown in Fig. 1b to deriving the equation-of-motion for the system. Based on Newton’s second motion law, the 
force of inertia 𝐹𝑚 due to the mass m is given by [12]: 

𝐹𝑚 = 𝑚
𝑑2𝑞(𝑡)

𝑑𝑡2
= 𝑚�̈�(𝑡)     (1) 

 

S 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mass-spring-dashpot system; (a) system; (b) free-body-diagram 

 

Perturbing the system by an external force, the system is subjected to vibration which decreases gradually. 

Consequently, the displacement amplitude gradually decays. The mechanism by which the vibrational energy is gradually 

decays is called damping [13]. The damping force 𝑓𝑏 of the dashpot is [14]: 

𝐹𝑏 = 𝑏
𝑑𝑞(𝑡)

𝑑𝑡
= 𝑏�̇�(𝑡)     (2) 

And by Newton’s motion law, the spring force 𝐹𝑘 due to the spring k is given by [15]: 

𝐹𝑘 = 𝑘𝑞(𝑡)           (3) 

With respect to Fig. 1b, the three forces in (1), (2) and (3) oppose the exogenous control force 𝐹𝑐 = 𝑢. The net forces 
acting on the system gives the equation-of-motion for the system expressed as: 

𝑚�̈�(𝑡) + 𝑏�̇�(𝑡) + 𝑘𝑞(𝑡) − 𝐹𝑐 = 0            (4) 

The block diagram for the system in (4) is shown in Fig. 2. In practice, the precise values for the parameters 𝑚, 𝑏, and 𝑘 

are not known. Even if known, the parameters are susceptible to alterations due to environmental changes and torn-and-

worn factors. Anyhow, the values of the system parameters are assumed to be bounded, that is: 

𝑚 = 𝑚𝑜(1 + 𝑝𝑚∆𝑚), 𝑏 = 𝑏𝑜(1 + 𝑝𝑏∆𝑏), 𝑘 = 𝑘𝑜(1 + 𝑝𝑘∆𝑘)   (5) 

where 𝑚𝑜, 𝑏𝑜, and 𝑘𝑜 denote the nominal parameters of the system defined in Table I, 𝑝𝑚, 𝑝𝑏  and 𝑝𝑘 and ∆𝑚, ∆𝑏 , and ∆𝑘 
represent possible perturbations on nominal values of the respective system parameters denoted by the subscripts. In this 
study, parametric variations of 30% above and below the nominal values are assumed, hence, 𝑝𝑚 = 𝑝𝑏 = 𝑝𝑘 = 0.3 and 
−1 ≤ ∆𝑚, ∆𝑏 , ∆𝑘≤ 1. 
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Figure 2: Mass-spring-dashpot system block diagram 

 

Table I: Simulation model parameters and description of variables 

Notation Description Value Unit 

mo Nominal mass 3.5 Kg 

bo Nominal viscous damping coefficient 1.2 N(ms-1) 

ko Nominal spring stiffness constant 2.2 N/m 

pm Possible relative perturbation on mo 30 % 

pb Possible relative perturbation on bo 30 % 

pk Possible relative perturbation on ko 30 % 

q Displacement - m 

q̇ Velocity - ms-1 

q̈ Acceleration - ms-2 

Fc External control force - N 
 

From Fig. 2, the parameter block 1 𝑚⁄  can be expressed in terms of the nominal value 𝑚𝑜 and perturbation variable ∆𝑚. 

It follows that, representing 1 𝑚⁄  in linear fractional transform (LFT) with respect to the uncertainty ∆𝑚 and noting that 

(5) applies, it is easy to obtain (6). Following similar approach for parameter blocks 𝑏 and 𝑘 in terms of perturbation 

variables ∆𝑏 and ∆𝑘 we obtain (7) and (8) respectively. 

1

𝑚
= ℱ𝑢(𝑀𝑚, ∆𝑚)                                                                             (6) 

𝑏 = ℱ𝑢(𝑀𝑐 , ∆𝑐)                                     (7) 

𝑘 = ℱ𝑢(𝑀𝑘, ∆𝑘)                           (8) 

where  

𝑀𝑚 = [
−𝑝𝑚

1
𝑚𝑜
⁄

−𝑝𝑚
1
𝑚𝑜
⁄

] ,𝑀𝑏 = [
0 𝑏𝑜
𝑝𝑏 𝑏𝑜

] ,𝑀𝑘 = [
0 𝑘𝑜
𝑝𝑘 𝑘𝑜

]. 

We can represent the system in LFT form of the perturbation variables. This is shown in Fig. 3 where the inputs and 
outputs to the perturbation blocks ∆𝑚, ∆𝑏  and ∆𝑘  are denoted as 𝑢𝑚, 𝑢𝑏 , 𝑢𝑘  and 𝑦𝑚, 𝑦𝑏 , 𝑦𝑘  respectively. When the LFT 
form holds, it is easy to show that the input-output equations for the perturbed variables are: 

{
 
 
 

 
 
 [

𝑦𝑚
�̈�
] = [

−𝑝𝑚
1
𝑚𝑜
⁄

−𝑝𝑚
1
𝑚𝑜
⁄

] [
𝑢𝑚

𝑢 − 𝑣𝑏 − 𝑣𝑘
]    

[
𝑦𝑏
𝑣𝑏
] = [

0 𝑏𝑜
𝑝𝑏 𝑏𝑜

] [
𝑢𝑏
�̇�
]                                

[
𝑦𝑘
𝑣𝑘
] = [

0 𝑘𝑜
𝑝𝑘 𝑘𝑜

] [
𝑢𝑘
𝑥
]                                

    𝑢𝑚 = ∆𝑚𝑦𝑚 ,    𝑢𝑏 = ∆𝑏𝑦𝑏 ,   𝑢𝑘 = ∆𝑘𝑦𝑘

          (9) 
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By setting 𝑥1 = 𝑞 and 𝑥2 = �̇� = �̇�1, so that �̇�2 = �̈� = �̈�1, and choosing 𝑥1 = 𝑦, one obtains: 

{
 
 
 
 

 
 
 
 
 �̇�1 = 𝑥2                                                      

 �̇�2 = −𝑝𝑚𝑢𝑚 +
1
𝑚𝑜
⁄ (𝑢 − 𝑣𝑏 − 𝑣𝑘)

𝑦𝑚 = −𝑝𝑚𝑢𝑚 +
1
𝑚𝑜
⁄ (𝑢 − 𝑣𝑏 − 𝑣𝑘)

𝑦𝑏 = 𝑏𝑜𝑥2                                                
𝑦𝑘 = 𝑘𝑜𝑥1                                                
𝑣𝑏 = 𝑝𝑏𝑢𝑏 + 𝑏𝑜𝑥2                                 
𝑣𝑘 = 𝑝𝑘𝑢𝑘 + 𝑘𝑜𝑥1                                
𝑦 = 𝑥1                                                  

   𝑢𝑚 = ∆𝑚𝑦𝑚,    𝑢𝑏 = ∆𝑏𝑦𝑏 ,   𝑢𝑘 = ∆𝑘𝑦𝑘

       (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: System block diagram representation with uncertainties 

From (10), after a handful simplifications, the governing equations for the system in Fig. 3 are obtained as (11): 

{
 
 
 
 
 

 
 
 
 
 

[
 
 
 
 
 
 
 
�̇�1
�̇�2
⋯
𝑦𝑚
𝑦𝑏
𝑦𝑘
⋯
𝑦 ]
 
 
 
 
 
 
 

= [

𝐴 ⋮ 𝐵1 𝐵2
⋯⋯ ⋯ ⋯
𝐶1 ⋮ 𝐷11𝐷12
𝐶2 ⋮ 𝐷21 0

]

[
 
 
 
 
 
 
 
𝑥1
𝑥2
⋯
𝑢𝑚
𝑢𝑏
𝑢𝑘
…
𝑢 ]
 
 
 
 
 
 
 

    

   [

𝑢𝑚
𝑢𝑏
𝑢𝑘
] = 𝑑𝑖𝑎𝑔(∆𝑚, ∆𝑏 , ∆𝑘) [

𝑦𝑚
𝑦𝑏
𝑦𝑘
]

 

               (11) 

 

where  

𝐴 = [
0 1

−
𝑘𝑜

𝑚𝑜
−

𝑏𝑜

𝑚𝑜

] , 𝐵1 = [
0 0 0

−𝑝𝑚 −
𝑝𝑏

𝑚𝑜
−

𝑝𝑘

𝑚𝑜

], 𝐵2 = [
0
1

𝑚𝑜

] , 𝐶1 = [

−
𝑘𝑜

𝑚𝑜
−

𝑏𝑜

𝑚𝑜

0 𝑏𝑜
𝑘𝑜 0

] , 𝐶2 = [1 0] 

𝐷11 = [
−𝑝𝑚 −

𝑝𝑏

𝑚𝑜
−

𝑝𝑘

𝑚𝑜

0 0 0
0 0 0

] , 𝐷12 = [

1

𝑚𝑜

0
0

] , 𝐷21 = [
0
0
0
]

𝑇

. 

Based on the system dynamics in (11) which incorporates the parametric uncertainties, it can be seen that the system has 
two states (𝑥1, 𝑥2), four inputs (𝑢, 𝑢𝑚, 𝑢𝑏 , 𝑢𝑘) and four outputs (𝑦, 𝑦𝑚, 𝑦𝑏 , 𝑦𝑘). By denoting the input-output dynamics 
relations of the nominal system as 𝐺𝑜 the state-space equation for 𝐺𝑜 is: 

 

𝑞 �̇� 

𝑦𝑏 𝑢𝑏  ∆𝒃 

 𝑀𝑏 
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 ∆𝒌 
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 ∆𝒎 
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𝐺𝑜 = [

𝐴 ⋮ 𝐵1 𝐵2
⋯⋯ ⋯ ⋯
𝐶1 ⋮ 𝐷11𝐷12
𝐶2 ⋮ 𝐷21 0

]           (12) 

The system can further be defined in upper LFT of the nominal plant with respect to the uncertainty ∆ as: 

𝑦 = 𝑥1 = ℱ𝑈(𝐺𝑜, ∆)𝑢             (13) 

where ∆= 𝑑𝑖𝑎𝑔(∆𝑚, ∆𝑏 , ∆𝑘). Go is the nominal plant, while ∆ is uncertainty matrix representing all probable 
uncertainties and is unknown but is assumed norm bounded (‖∆‖∞ < 1). 

Control System Design 
A. Suboptimal 𝓗∞ Design 

At this point, the proposed control system is designed. A diagram of the control structure is shown in Fig. 4, where Go 

and ∆  retain their definitions, Ga denotes the uncertain plant,  𝑒  is the set-point tracking error and F is feedback 
controller. Also, 𝛼𝑢  and 𝛼𝑝  are the control and performance weighting filter functions (to be designed) respectively, 

while 𝑒𝑝 and 𝑒𝑢 represent performance and control outputs in that order. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Closed-loop system structure 

The control design problem is to find the optimal controller 𝐹(𝑠) for the linear output feedback control law 𝑢(𝑠) =
𝐹(𝑠)𝑦(𝑠) that minimizes the cost function (14) over all sets of stabilizing controllers.  

                                                             𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖[
𝑆
𝐹𝑆
]‖

∞
                            (14) 

 
Where  

𝑆:= (𝐼 + 𝐺𝑜𝐹)
−1 =

𝑒𝑟𝑟𝑜𝑟 (𝑒)

𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡(𝑟) − 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑑)
 

is known as the output sensitivity function of the plant 𝐺𝑜 and represents the transfer function of the set-point tracking 
error. The design goal in (14) is to minimize the sensitivity transfer function 𝑆  (which ensures good disturbance 
attenuation and tracking error) and the transfer function 𝐹𝑆 (which takes care of robustness issue and keeping the control 
effort minimal). Generally, in order to meet design specifications, the cost function (14) is multiplied by the weighting 
functions 𝛼𝑢  and 𝛼𝑝 . Consequently, with the weighting functions incorporated into the mixed-sensitivity (or S/FS) 

control design, we have the following minimization requirements: 

• Nominal stability and performance requirement:  

‖[
𝛼𝑝𝑆

𝛼𝑢𝐹𝑆
]‖
∞

< 𝛾                       (15) 

• Robust stability and performance requirement:  

‖[
𝛼𝑝(𝐼 + 𝐺𝑎𝐹)

−1

𝛼𝑢𝐹(𝐼 + 𝐺𝑎𝐹)
−1
]‖

∞

< 𝛾          (16) 

for a positive constant 𝛾 < 1. In (16) (𝐼 + 𝐺𝑎𝐹)
−1  is the sentivity transfer function of the uncertain plant. It is also 

required to keep the order of the synthesized controller low. 

In this study, all system parameters are assumed to vary from the nominal value by ±30%  (i.e. 2.45 ≪ 𝑚 ≤
4.55, 0.84 ≪ 𝑏 ≪ 1.56 𝑎𝑛𝑑 1.54 ≪ 𝑘 ≤ 2.86). If the closed-loop system remains internally stable in the presence of 
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these uncertainties, then the system is said to be robustly stable to all possible model variations. Equation (17) represents 
the performance criterion required to be minimal w.r.t ‖∙‖∞ for all uncertainties. 

[
𝑒𝑝
𝑒𝑢
] = [

𝛼𝑝(𝐼 + 𝐺𝑎𝐹)
−1

𝛼𝑢𝐾(𝐼 + 𝐺𝑎𝐹)
−1
] 𝑑                      (17) 

B. Selection of Weighting Functions 
Disturbance is mostly having its power localized at low frequencies. Thus, it will be successfully rejected if the 
maximum singular value of the sensitivity function S is made small over the same low frequencies. Assuming that the 
singular value of  (𝐼 + 𝐺𝑎𝐹)

−1 is known, we can set the singular value of 1 𝛼𝑝(𝑠)⁄  greater than that of (𝐼 + 𝐺𝑎𝐹)
−1 over 

all frequencies for “‖𝛼𝑝(𝑠)(𝐼 + 𝐺𝑎𝐹)
−1‖

∞
< 1” to hold. For “‖𝛼𝑝(𝑠)(𝐼 + 𝐺𝑎𝐹)

−1‖
∞
< 1”  to hold, we must ensure that 

the singular values of the sensitivity function lie below those of 1 𝛼(𝑠)𝑝⁄ . As a deduction, a low-pass filter transfer 

function is selected as the performance weighting function 𝛼𝑝(𝑆)  to suppress the effect of the disturbance. The 

performance weighting filter transfer function can be obtained using [16] 

𝛼𝑝(𝑆) = 𝛽
(𝜌𝑆2 + 2𝜁1𝜔𝑐√𝜌𝑆 + 𝜔𝑐

2)

(𝛽𝑆2 + 2𝜁2𝜔𝑐√𝛽𝑆 + 𝜔𝑐
2)
                                                                 (18) 

where 𝜌 represents the high frequency gain which deals with the system response overshoot, 𝛽 is disturbance rejection 
function dc gain, 𝜔𝑐 is crossover frequency, while 𝜉1 and 𝜉2 represents the damping constants of crossover frequency. 
Specified transient response requirements are assumed to be a settling time of less than 10s and a maximum overshoot of 
25% for robust stability and robust performance. 

In practice, “trial-and-check” method is usually employed to arrive at “best” weighting filter functions that meet 
design requirements. The performance weighting function is selected as (19) and the singular values response plot of the 
inverse of the performance weighting function is shown in Fig. 5a.  

𝛼𝑝(𝑆) = 0.1
𝑆2 + 4𝑆 + 100

𝑆2 + 15𝑆 + 0.01
                                                                  (19) 

Practically, the mass actuator has finite power and limited bandwidth of operation [16]. By making the control 
weights low at low frequencies and increased weights at higher frequencies, we can have a control system that can allow 
high values of control force at low frequencies, but small force amplitude at high frequencies. The control weighting 
function 𝛼𝑢(𝑠) is required for reducing the high frequency part of the control input before it is sent to the actuator. A 
high-pass filter is usually selected for weighting the control input and to ensure robustness against uncertainties in the 
plant in the high frequency range [5],[6],[18]. For a good design, selecting a suitable weighting function is crucial. 
According to [16] the control weighting function can be obtained using: 

𝛼𝑢(𝑆) =

𝑆2 + 2
𝜔𝑏𝑐
√𝑀𝐹𝑆

𝑆 +
𝜔𝑏𝑐
2

𝑀𝐹𝑆

𝜏𝑆2 + 2√𝜏𝜔𝑏𝑐𝑆 + 𝜔𝑏𝑐
2
                                                              (20) 

where 𝑀𝐹𝑆 is magnitude of 𝐹(𝐼 + 𝐺𝑎𝐹)
−1, 𝜔𝑏𝑐 is control bandwidth and 𝜏 is a small constant. Similarly, by “trial-and-

check” tuning of control weighting function the weighting function is selected as (21). The corresponding singular values 
response plot of the inverse of the control weighting function is shown in Fig. 5b. 

𝛼𝑢(𝑆) = 102
𝑆 + 1 × 10−1

𝑆 + 1 × 106
                                                                  (21) 

 
Figure 5: Singular values for: (A) 𝜶𝒑(𝑺) and (B) 𝜶𝒖(𝑺) 
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From Fig. 5a, it is evident that using the designed performance weighting function (19), the closed-loop system would 
suppress the amplitudes of the output disturbance at low frequencies (up to about 9 rad/sec) in the ratio 1 to 0.001. 
Hence, the effect of a unit disturbance on the output or set-point tracking error at steady-state would be in the order of 
≤ 10−3. It may have also been observed that, frequencies in excess of about 9 rad/sec are un-attenuated. Fortunately, the 
disturbance signal dwells at frequencies well below 9 rad/sec. 

C. Controller Synthesis Methodology 
The MATLAB® Robust Control Toolbox (MRCT) can be used to carryout 𝛾-iterations. MRCT command hinfsyn was 
used to synthesis the (sub)optimal ℋ∞ controller based on the open-loop interconnection system. The designed controller 
is to minimize ‖ℱ𝐿(𝐺𝑜 , 𝐹)‖∞ over sets of stabilizing controllers. ℱ𝐿(𝐺𝑜 , 𝐹) is the lower LFT of the nominal plant and the 
designed controller. Iterations were performed based on the bisection method with an initial lower bound 𝛾-value of 0.1 
and an initial upper bound 𝛾-value of 1. Relative error tolerance for 𝛾 is selected as 10−3. Iterations are performed on 
the initial bounds of 𝛾 in an effort to approach the optimal full information ℋ∞ control design. A final 𝛾-value of 0.1448 
was achieved and a 5th order controller is obtained. The states-space matrices for the synthesized controller are obtained 
as (22): 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝐴𝐹 =

[
 
 
 
 
 
 
 
 
−345

1006

−1361

1833

677

1575

414

4037

12692

381
1 0 0 0 0

0 0
−25

37516

−41

18893
0

0 0
41

18893

−22514

1501
0

−5477

19

−5499

24

51581

4

73837

24

−38429

61 ]
 
 
 
 
 
 
 
 

                                      

 

𝐵𝐹 =

[
 
 
 
 
 
 

0
0

5249

643
−5077

382
0 ]

 
 
 
 
 
 

, 𝐶𝐹 = [
−95

32956

−139

6110

677

5250

125

4063

6346

635
],      𝐷𝐹 = 0

                          (22) 

D.  Controller Order Reduction 
To this point, we have successfully obtained our synthesized ℋ∞ controller for the benchmark system under study. As 
mentioned earlier a 5th order controller is obtained (22). However, in practice the controller with the lowest order 
capable of satisfying control requirement, is preferred by practicing control engineers. Compared to lower order 
controllers, higher order controllers are relatively difficult and expensive to implement due to hardware limitations. The 
idea behind order reduction is to discard states, which are “weakly” controllable and observable. However, a mode may 
be weakly observable and highly controllable, or vice versa. In such a scenario, deleting such a mode may be 
inappropriate to the system dynamics. One way to deal with this is to obtain a balanced realization to obtain a “balance” 
for the observability and controllability of the system before it is reduced. Order reduction can be done using techniques 
such as balanced truncation, balanced residualization, optimal Hankel-norm, ℋ2 -norm, ℋ∞ -norm, or Markov and 
covariance parameter matching techniques to mention but few. For brevity we are not discussing on these reduction 
techniques. Interested reader may refer to [21] for detailed treatment of these reduction techniques. 

We employed the optimal Hankel norm method due to its accuracy at higher frequencies. The MRCT is utilized for 
reduction based using optimal Hankel norm approximation technique. The steps required are as follows: 

1. Obtain a truncated balanced realization of the full-order system. This may be obtained using the MRCT 
command sysbal. All Hankel singular values (SVs) greater than defined tolerance tol are retained. 

2. Next, compute the energy levels for the states of the balanced realized full-order controller model, for 
contribution evaluation. The MRCT command hsv may be used. At this stage table II is obtained.  

3. Obtain the approximate controller. 

Based on Table II, a 3rd order controller is selected and its state-space equation matrices are given as (23). 
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{
 
 
 
 
 
 

 
 
 
 
 
 

𝐴𝐹𝑅 =

[
 
 
 
 
 
−7256

721

1106

215

−191

1575
−1487
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387

−62

5075

0 0
−192

288191]
 
 
 
 
 

 

𝐵𝐹𝑅 =

[
 
 
 
 
 
4232

135
2850

179
464

153 ]
 
 
 
 
 

𝐶𝐹𝑅 = [
8821

272

2567

189

665

219
]     𝐷𝐹𝑅 = [

−1233

409
]

                                 (23) 

In Fig. 6 the performances of full-order and reduced order controllers are compared based on frequency response. It 
may have been observed that the reduced order controller response matches that of the full order controller with respect 
to both magnitude and phase up to a frequency of about 120 rads/sec. 

 

Figure 6: Frequency response comparison for full-order and reduced-order controllers 

Table II: Full order controller states contribution based on Hankel SVs 

State: 1 2 3 4 5 

Hankel SVs: 6902.5 50.6 45.9 2.4 0.7 

Results and Performance Evaluations 
The final 𝛾-value of 0.1448 indicates that the condition “‖𝛼𝑝(𝑠)(𝐼 + 𝐺𝑜𝐹)

−1‖
∞
< 1” has been satisfied for the 

nominal system. In Fig. 7 the closed-loop system singular values for a frequency range of [10−2 105] rad/sec are 
shown. It can be confirmed from the figure that the maximum magnitude is about 0.145 and is maintained constant over a 
frequency range of about 0.1 rad/sec to 100 rad/sec.  

In Fig. 8, the magnitude of 1 𝛼(𝑠)𝑝⁄  and that of the sensitivity function are compared. It is observed that, over the 

entire frequency range, magnitudes of the sensitivity function lie below those of the inverse of performance weighting 
function. The implication is that, over the entire simulation frequency range, it is guaranteed that singular values of the 
sensitivity function lie below those of 1 𝛼(𝑠)𝑝⁄ . 

For structured uncertainty, robust stability and performance investigations require the frequency response in terms of 
structured singular values (SSV) [19] (also called the µ-value). Our concern is to obtain the upper and lower bounds for 
µ-values. The MRCT command mu can be used for this purpose. For the steps involved in µ-analysis [19]: 

1. Recast the problem into the standard “𝑀 − ∆” structure of Fig. 9, where the transfer function matrix 𝑀 denotes the 
lower LFT of the open-loop system w.r.t the controller F. ∆ denotes the uncertainty matrix. 

2. Compute the frequency response of 𝑀. It can be proved that the system in Fig. 9 achieves robust stability over all ∆ 
if and only if the maximum SSV value over all frequencies is less than unity according to: 

μ_∆=[M(jω)]<1     (24) 
3. Define the structure of the perturbation matrix ∆. 
4. Compute the SSV bounds w.r.t the defined uncertainty. The MRCT command mu can be utilized. 
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For robust stability, it is required that the upper bound of SSV should be less than 1 over the entire frequency range. 
In robust stability investigation, our concern is investigating how robust the model is to uncertainty. 

The computation results obtained are given in table III. The peak (i.e. upper bound) of 𝜇∆ = [𝑀(𝑗𝜔)] is obtained as 
0.6160 and its lower bound is obtained as 0.4068. The interpretation of this numerical value is that, for all structured 
perturbation matrices (∆𝜖∆) satisfying: 

𝑚𝑎𝑥
𝜔 = 𝜎[∆(𝑗𝜔)] <

1

0.616
 

the system will remain robustly stable at all frequency. This can also be confirmed from Fig. 10 where the responses for 
the upper and lower bounds of SSV are plotted. For the purpose of comparison, we also plot the singular values of M. 
Over all frequencies, SSV values are less than 1 and hence robust stability is guaranteed. 

 

       Figure 7: Closed-loop system singular values plot 

 

Figure 8: Inverse performance weighting function and sensitivity function comparison 

According to what is commonly known as (Doyle 1982) [20], another benefit of ℋ∞ norm for performance as well as 
for uncertainty is the fact that robust stability problem may be recast as a robust performance problem. The robust 
performance requirement can be incorporated into the uncertainty matrix as a “fake uncertainty block”. By doing so, the 
condition in (24) can be extended to incorporate this modification and can be re-written as: 

𝜇∆̃ = [𝑇(𝑗𝜔)] < 1,        ∀𝜔          (25) 

where 𝑇  represents the transfer function from the exogenous disturbance 𝑑  to the performance error 𝑒  and ∆̃=
𝑑𝑖𝑎𝑔(∆, ∆𝑃). ∆𝑃 is the “fake uncertainty block” to allow for performance requirement. 

 

 

 

 
Figure 9: LFT configuration for robust stability analysis 

𝑴 

∆ 

𝑦∆ 𝑢∆ 
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Table III: Structured singular values for robust stability 

µ-bound Value Frequency µ-Margin 

Upper: 0.6160 9.77 rad/sec 
0.2092 

Lower: 0.4068 25.5 rad/sec 
 

For robust performance, the steps involved in µ-analysis are similar to those presented for robust stability, except that 
the system is configured in the form shown in Fig. 11 which incorporates the exogenous disturbance 𝑑  and the 
performance error 𝑒 that characterizes the performance objective. Likewise, like in the case of robust stability, for robust 
performance it is a requirement that SSV upper-bound should <1 over the entire frequency range. But, in robust 
performance study, our concern is investigating how robust the model is to disturbance. The computation results obtained 
for robust performance are given in table IV. The peak (i.e. upper bound) of 𝜇∆̃ = [𝑀(𝑗𝜔)] is obtained as 0.7106 and its 
lower bound is obtained as 0.6980. The engineering meaning of these numerical values is that, for all structured 

perturbation matrices (∆𝜖∆̃) satisfying: 

𝑚𝑎𝑥
𝜔 = 𝜎[∆(𝑗𝜔)] <

1

0.7106
 

the system maintains robust performance. This can also be confirmed from Fig. 12, where the nominal and robust 
performances of the system with ℋ∞ were studied. For comparison purpose, the SSV values of M are also plotted. Over 
all frequencies, SSV values are less than 1 and hence nominal as well as robust performance are guaranteed. These 
deductions are based on the fact that the frequency responses of the nominal performance and robust performance all 
have magnitudes less than 1 at all frequencies over the frequency range 0.1 − 100 rads/sec. It may have been observed 
that the effect of the disturbance resulted in narrowing of the µ − 𝑚𝑎𝑟𝑔𝑖𝑛 by about 94%.  

Table IV: Structured singular values for robust performance 

µ Bound Value Frequency µ-Margin 

Upper: 0.7106 0.87 rad/sec 
0.0126 

Lower: 0.6980 0.81 rad/sec 

 
We investigated the system’s robustness with the designed controller based on frequency response. We will proceed to 
study the robustness of the system based on time-response criteria. The goal is a maximum overshoot of 25%, and the 
system is required to reach steady state in less than 10 seconds. In Fig. 13, the transient response of the full-order and the 
reduced-order controller to step change in command were studied. It can be seen that there were no significant 
differences in performance. Yet, it is worth to note that the reduced-order controller was relatively slower than the full-
order controller. As given in Table V, maximum overshoots of about 22% were observed and settling times were less 
than 10 seconds for all controllers. Also, in Fig. 14, the transient responses to unity magnitude disturbance outputs of the 
two controllers were studied. Disturbance signals with durations of 10 seconds were injected at 15 and 45 seconds. It was 
observed that the full-order and reduced-order controllers were robust to the output disturbance with maximum 
overshoots of about 21% and 22.4% respectively. Also, settling times for full and reduced-order controller were about 3 
seconds and 9 seconds with respect to order. We have seen in Table II that the 4th and 5th states contribute less to the 
dynamics of the full-order controller, thus, we obtained a 3rd-order controller. Based on Hankel norm values, a 2nd-order 
controller cannot meet robustness requirements. This claim has been examined in Fig. 15 where oscillatory transient 
responses were observed. 

Table V: Transient responses to step tracking and disturbance 

 Response to Step Response to Dist. 

Controller Order OS (%) Settling Time(s) OS (%) Settling Time(s) 

5th 21 3 21 3 

3rd 22.4 8 22.4 9 
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Figure: 10 SSV bounds for robust stability studies 

 

 

 

 

Figure 11: LFT configuration for robust performance analysis 

 

Figure 12: SSV bounds for nominal and robust performance studies 

 

Figure 13: Transient response to reference command tracking with 𝓗∞ controller 
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Figure 14: Transient response to disturbance with 𝓗∞ controller 

Conclusion and Recommendations 
In this work, the discrepancies between the practical mass-spring-dashpot system and the nominal system were evaluated 
and uncertainty modelling was conducted. A third-order controller was synthesized where a ℋ∞  norm of 0.145 was 
achieved. It was shown using µ-analysis that using the designed controller the system was able to achieve both robust 
stability and performance in the presence of uncertainties and disturbance. The effect of a unit disturbance on the set-
point tracking error at steady-state was minimal. Also, transient response results showed that the control system achieved 
the specified requirement of overshoot and settling time. An overshoot of 22.4% and a settling time of 9 seconds were 
recorded as worst-case performance. We conclude that the objectives of the study have been achieved. In design, there 
may be some noticeable discrepancies in performances between the synthesized full order controller and the reduced 
order controller. Also, in practical scenario, there may be discrepancy in accuracy between the designed controller and 
the implemented controller. These cases are crucial and can be included as uncertainty during design to allow for better 
accuracies in design and implementation. 

 

Figure 15: Transient response to reference command tracking with second order 𝓗∞ controller 
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